Search Results

Now showing 1 - 2 of 2
  • Item
    Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems
    (Basel : MDPI AG, 2021) Perez-Bosch Quesada, Emilio; Romero-Zaliz, Rocio; Perez, Eduardo; Kalishettyhalli Mahadevaiah, Mamathamba; Reuben, John; Schubert, Markus Andreas; Jimenez-Molinos, Francisco; Roldan, Juan Bautista; Wenger, Christian
    In this work, three different RRAM compact models implemented in Verilog-A are analyzed and evaluated in order to reproduce the multilevel approach based on the switching capability of experimental devices. These models are integrated in 1T-1R cells to control their analog behavior by means of the compliance current imposed by the NMOS select transistor. Four different resistance levels are simulated and assessed with experimental verification to account for their multilevel capability. Further, an Artificial Neural Network study is carried out to evaluate in a real scenario the viability of the multilevel approach under study.
  • Item
    How the Selection of Training Data and Modeling Approach Affects the Estimation of Ammonia Emissions from a Naturally Ventilated Dairy Barn—Classical Statistics versus Machine Learning
    (Basel : MDPI AG, 2020) Hempel, Sabrina; Adolphs, Julian; Landwehr, Niels; Janke, David; Amon, Thomas
    Environmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days.