Search Results

Now showing 1 - 3 of 3
  • Item
    Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges
    (Bristol : IOP Publ., 2022) Wubs, J.R.; Höft, H.; Kettlitz, M.; Becker, M.M.; Weltmann, K.-D.
    The impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a single-filament arrangement has been investigated in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. The development of the DBDs was recorded by an iCCD and a streak camera system, while fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy. The results demonstrate that breakdown in a smaller gap is characterised by a slower streamer propagation but a significantly higher acceleration. It can therefore be concluded that the proximity of the cathode has a strong impact on the characteristics of the streamer breakdown. However, after the streamer has crossed the gap, the discharge structure in front of the anode was found to be the same independent of the actual gap distance.
  • Item
    Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data
    (Bristol : IOP Publ., 2022) Stankov, M.; Becker, M.M.; Hoder, T.; Loffhagen, D.
    An extended reaction kinetics model (RKM) suitable for the analysis of weakly ionised, non-thermal argon plasmas with gas temperatures around 300 K at sub-atmospheric and atmospheric pressures is presented. It considers 23 different species including electrons as well as the ground state atom, an atomic and molecular ion, four excited molecular states, and 15 excited atomic states of argon, where all individual 1s and 2p states (in Paschen notation) are included as a separate species. This 23-species RKM involves 409 collision processes and radiative transitions and recent electron collision cross section data. It is evaluated by means of results of time- and space-dependent fluid modelling of argon discharges and their comparison with measured data for two different dielectric barrier discharge configurations as well as a micro-scaled atmospheric-pressure plasma jet setup. The results are also compared with those obtained by use of a previously established 15-species RKM involving only the two lumped 2p states 2p10…5 and 2´p4 … 1. It is found that the 23-species RKM shows generally better agreement with experimental data and provides more options for direct comparison with measurements than the frequently used 15-species RKM.
  • Item
    Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure
    (Bristol : IOP Publ., 2020) Stankov, M.; Becker, M.M.; Bansemer, R.; Weltmann, K.-D.; Loffhagen, D.
    The influence of the secondary electron emission coefficient, γ, and the relative permittivity, ɛr, of the dielectric layers on the characteristics of dielectric-barrier discharges (DBDs) is studied by means of numerical modelling and calculated results are compared with experimental data. The analysis has been performed for a geometrically symmetric, plane-parallel DBD in argon with copper electrodes covered by quartz dielectrics. A time-dependent, spatially one-dimensional fluid model involving the drift-diffusion approximation is applied for the numerical analysis of the DBD operating sinusoidally at a frequency of 24 kHz with applied voltages between 1.8 and 3.4 kV and pressures from 100 to 650 mbar. Main features of the model as well as the experimental setup and procedures are given. The modelling studies show especially the sensitivity of the results on the specific choice of γ and ɛr regarding the occurrence and intensity of discharge peaks, the appearance of one or more smaller peaks after the main peak, as well the establishment of a single periodic, multiperiodic or even chaotic temporal evolution of the DBD. In particular, generally good agreement between measured and calculated discharge current signals and the power dissipated in the discharge is found for γ = 0.02 and ɛr = 4.2.