Search Results

Now showing 1 - 6 of 6
  • Item
    Low-Temperature Magnetothermodynamics Performance of Tb1-xErxNi2 Laves-Phases Compounds for Designing Composite Refrigerants
    (Basel : MDPI, 2022) Ćwik, Jacek; Koshkid’ko, Yurii; Nenkov, Konstantin; Tereshina-Chitrova, Evgenia; Weise, Bruno; Kowalska, Karolina
    In this paper, the results of heat capacity measurements performed on the polycrystalline Tb1-xErxNi2 intermetallic compounds with x = 0.25, 0.5 and 0.75 are presented. The Debye temperatures and lattice contributions as well as the magnetic part of the heat capacity were determined and analyzed. The heat capacity measurements reveal that the substitution of Tb atoms for Er atoms leads to a linear reduction of the Curie temperatures in the investigated compounds. The ordering temperatures decrease from 28.3 K for Tb0.25Er0.75Ni2 to 12.9 K for Tb0.75Er0.25Ni2. Heat capacity measurements enabled us to calculate with good approximation the isothermal magnetic entropy ΔSmag and adiabatic temperature changes ΔTad for Tb1-xErxNi2, for the magnetic field value equal to 1 T and 2 T. The optimal molar ratios of individual Tb0.75Er0.25Ni2, Tb0.5Er0.5Ni2 and Tb0.25Er0.75Ni2 components in the final composite were theoretically determined. According to the obtained results, the investigated composites make promising candidates that can find their application as an active body in a magnetic refrigerator performing an Ericsson cycle at low temperatures. Moreover, for the Tb0.5Er0.5Ni2 compound, direct measurements of adiabatic temperature change in the vicinity of the Curie temperature in the magnetic field up to 14 T were performed. The obtained high-field results are compared to the data for the parent TbNi2 and ErNi2 compounds, and their magnetocaloric properties near the Curie temperature are analyzed in the framework of the Landau theory for the second-order phase transitions.
  • Item
    Influence of Lattice Mismatch on Structural and Functional Properties of Epitaxial Ba0.7Sr0.3TiO3 Thin Films
    (Basel : MDPI, 2023) Wawra, Jonas; Nielsch, Kornelius; Hühne, Ruben
    Substrate-induced strains can significantly influence the structural properties of epitaxial thin films. In ferroelectrics, this might lead to significant changes in the functional properties due to the strong electromechanical coupling in those materials. To study this in more detail, epitaxial Ba0.7Sr0.3TiO3 films, which have a perovskite structure and a structural phase transition close to room temperature, were grown with different thicknesses on REScO3 (RE–rare earth element) substrates having a smaller lattice mismatch compared to SrTiO3. A fully strained SrRuO3 bottom electrode and Pt top contacts were used to achieve a capacitor-like architecture. Different X-ray diffraction techniques were applied to study the microstructure of the films. Epitaxial films with a higher crystalline quality were obtained on scandates in comparison to SrTiO3, whereas the strain state of the functional layer was strongly dependent on the chosen substrate and the thickness. Differences in permittivity and a non-linear polarization behavior were observed at higher temperatures, suggesting that ferroelectricity is supressed under tensile strain conditions in contrast to compressive strain for our measurement configuration, while a similar reentrant relaxor-like behavior was found in all studied layers below 0°C.
  • Item
    Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
    ([London] : Nature Publishing Group UK, 2024) Cheng, Erjian; Yan, Limin; Shi, Xianbiao; Lou, Rui; Fedorov, Alexander; Behnami, Mahdi; Yuan, Jian; Yang, Pengtao; Wang, Bosen; Cheng, Jin-Guang; Xu, Yuanji; Xu, Yang; Xia, Wei; Pavlovskii, Nikolai; Peets, Darren C.; Zhao, Weiwei; Wan, Yimin; Burkhardt, Ulrich; Guo, Yanfeng; Li, Shiyan; Felser, Claudia; Yang, Wenge; Büchner, Bernd
    The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.
  • Item
    Resonating holes vs molecular spin-orbit coupled states in group-5 lacunar spinels
    ([London] : Nature Publishing Group UK, 2023) Petersen, Thorben; Bhattacharyya, Pritam; Rößler, Ulrich K.; Hozoi, Liviu
    The valence electronic structure of magnetic centers is one of the factors that determines the characteristics of a magnet. This may refer to orbital degeneracy, as for jeff = 1/2 Kitaev magnets, or near-degeneracy, e.g., involving the third and fourth shells in cuprate superconductors. Here we explore the inner structure of magnetic moments in group-5 lacunar spinels, fascinating materials featuring multisite magnetic units in the form of tetrahedral tetramers. Our quantum chemical analysis reveals a very colorful landscape, much richer than the single-electron, single-configuration description applied so far to all group-5 GaM4X8 chalcogenides, and clarifies the basic multiorbital correlations on M4 tetrahedral clusters: while for V strong correlations yield a wave-function that can be well described in terms of four V4+V3+V3+V3+ resonant valence structures, for Nb and Ta a picture of dressed molecular-orbital jeff = 3/2 entities is more appropriate. These internal degrees of freedom likely shape vibronic couplings, phase transitions, and the magneto-electric properties in each of these systems.
  • Item
    Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2
    ([London] : Nature Publishing Group UK, 2020) Stahl, Quirin; Kusch, Maximilian; Heinsch, Florian; Garbarino, Gaston; Kretzschmar, Norman; Hanff, Kerstin; Rossnagel, Kai; Geck, Jochen; Ritschel, Tobias
    Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.
  • Item
    Signatures of a magnetic-field-induced Lifshitz transition in the ultra-quantum limit of the topological semimetal ZrTe5
    ([London] : Nature Publishing Group UK, 2022) Galeski, S.; Legg, H.F.; Wawrzyńczak, R.; Förster, T.; Zherlitsyn, S.; Gorbunov, D.; Uhlarz, M.; Lozano, P.M.; Li, Q.; Gu, G.D.; Felser, C.; Wosnitza, J.; Meng, T.; Gooth, J.
    The quantum limit (QL) of an electron liquid, realised at strong magnetic fields, has long been proposed to host a wealth of strongly correlated states of matter. Electronic states in the QL are, for example, quasi-one dimensional (1D), which implies perfectly nested Fermi surfaces prone to instabilities. Whereas the QL typically requires unreachably strong magnetic fields, the topological semimetal ZrTe5 has been shown to reach the QL at fields of only a few Tesla. Here, we characterize the QL of ZrTe5 at fields up to 64 T by a combination of electrical-transport and ultrasound measurements. We find that the Zeeman effect in ZrTe5 enables an efficient tuning of the 1D Landau band structure with magnetic field. This results in a Lifshitz transition to a 1D Weyl regime in which perfect charge neutrality can be achieved. Since no instability-driven phase transitions destabilise the 1D electron liquid for the investigated field strengths and temperatures, our analysis establishes ZrTe5 as a thoroughly understood platform for potentially inducing more exotic interaction-driven phases at lower temperatures.