Search Results

Now showing 1 - 10 of 588
  • Item
    Genotyping of methicillin resistant Staphylococcus aureus from the United Arab Emirates
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Senok, Abiola; Nassar, Rania; Celiloglu, Handan; Nabi, Anju; Alfaresi, Mubarak; Weber, Stefan; Rizvi, Irfan; Müller, Elke; Reissig, Annett; Gawlik, Darius; Monecke, Stefan; Ehricht, Ralf
    Reports from Arabian Gulf countries have demonstrated emergence of novel methicillin resistant Staphylococcus aureus (MRSA) strains. To address the lack of data from the United Arab Emirates (UAE), genetic characterisation of MRSA identified between December 2017 and August 2019 was conducted using DNA microarray-based assays. The 625 MRSA isolates studied were grouped into 23 clonal complexes (CCs) and assigned to 103 strains. CC5, CC6, CC22 and CC30 represented 54.2% (n/N = 339/625) of isolates with other common CCs being CC1, CC8, CC772, CC361, CC80, CC88. Emergence of CC398 MRSA, CC5-MRSA-IV Sri Lanka Clone and ST5/ST225-MRSA-II, Rhine-Hesse EMRSA/New York-Japan Clone in our setting was detected. Variants of pandemic CC8-MRSA-[IVa + ACME I] (PVL+) USA300 were detected and majority of CC772 strains were CC772-MRSA-V (PVL+), “Bengal- Bay Clone”. Novel MRSA strains identified include CC5-MRSA-V (edinA+), CC5-MRSA-[VT + fusC], CC5-MRSA-IVa (tst1+), CC5-MRSA-[V/VT + cas + fusC + ccrA/B-1], CC8-MRSA-V/VT, CC22-MRSA-[IV + fusC + ccrAA/(C)], CC45-MRSA-[IV + fusC + tir], CC80-MRSA-IVa, CC121-MRSA-V/VT, CC152-MRSA-[V + fusC] (PVL+). Although several strains harboured SCC-borne fusidic acid resistance (fusC) (n = 181), erythromycin/clindamycin resistance (ermC) (n = 132) and gentamicin resistance (aacA-aphD) (n = 179) genes, none harboured vancomycin resistance genes while mupirocin resistance gene mupR (n = 2) and cfr gene (n = 1) were rare. An extensive MRSA repertoire including CCs previously unreported in the region and novel strains which probably arose locally suggest an evolving MRSA landscape. © 2020, The Author(s).
  • Item
    Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey
    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.
  • Item
    PHONA - photonische Nanomaterialien : Schlussbericht ; Laufzeit des Vorhabens: 01.12.2009-30.11.2014
    (Hannover : Technische Informationsbibliothek (TIB), 2014) Hübner, Uwe; Popp, Jürgen
    [no abstract available]
  • Item
    Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging
    (London : Nature Publishing Group, 2016) Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen
    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.
  • Item
    Evaluation of shifted excitation Raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra
    (Basel : MDPI, 2017) Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W.; Popp, Jürgen
    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.
  • Item
    Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Wallace, Zoë; Kopycinski, Jakub; Yang, Hongbing; McCully, Michelle L.; Eggeling, Christian; Chojnacki, Jakub; Dorrell, Lucy
    T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
  • Item
    Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress
    (Basel : MDPI, 2018) Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Kirchhoff, Johanna; Tannert, Astrid; Neugebauer, Ute; Samek, Ota; Zemánek, Pavel
    Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.
  • Item
    Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry
    (Cambridge : Soc., 2015) Hanf, Stefan; Fischer, Sarah; Hartmann, Henrik; Keiner, Robert; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten
    Photosynthesis and respiration are major components of the plant carbon balance. During stress, like drought, carbohydrate supply from photosynthesis is reduced and the Krebs cycle respiration must be fueled with other stored carbon compounds. However, the dynamics of storage use are still unknown. The respiratory quotient (RQ, CO2 released per O2 consumed during respiration) is an excellent indicator of the nature of the respiration substrate. In plant science, however, online RQ measurements have been challenging or even impossible so far due to very small gas exchange fluxes during respiration. Here we apply cavity-enhanced multi-gas Raman spectrometry (CERS) for online in situ RQ measurements in drought-tolerant pine (Pinus sylvestris [L.]) and drought-intolerant spruce (Picea abies [L. H. Karst]). Two different treatments, drought and shading, were applied to reduce photosynthesis and force dependency on stored substrates. Changes in respiration rates and RQ values were continuously monitored over periods of several days with low levels of variance. The results show that both species switched from COH-dominated respiration (RQ = 1.0) to a mixture of substrates during shading (RQ = 0.77–0.81), while during drought only pine did so (RQ = 0.75). The gas phase measurements were complemented by concentration measurements of non-structural carbohydrates and lipids. These first results suggest a physiological explanation for greater drought tolerance in pine. CERS was proven as powerful technique for non-consumptive and precise real-time monitoring of respiration rates and respirational quotients for the investigation of plant metabolism under drought stress conditions that are predicted to increase with future climate change.
  • Item
    Sub-picosecond temporal resolution of anomalous Hall currents in GaAs
    (Berlin : Nature Pulishing, 2017) Schmidt, Christian B.; Priyadarshi, Shekhar; Bieler, Mark
    Peroxidase-mimicking DNAzyme was applied as a catalyst of silver deposition on gold nanoparticles. This DNAzyme is formed when hemin binds to the G-quadruplex-forming DNA sequence. Such a system is able to catalyze a redox reaction with a one- or two-electron transfer. The process of silver deposition was monitored via a localized surface plasmon resonance technique (LSPR), which allows one to record scattering spectrum of a single nanoparticle. Our study showed that DNAzyme is able to catalyze silver deposition. The AFM experiments proved that DNAzyme induced the deposition of silver shells of approximately 20 nm thickness on Au nanoparticles (AuNPs). Such an effect is not observed when hemin is absent in the system. However, we noticed non-specific binding of hemin to the capture oligonucleotides on a gold NP probe that also induced some silver deposition, even though the capture probe was unable to form G-quadruplex. Analysis of SEM images indicated that the surface morphology of the silver layer deposited by DNAzyme is different from that obtained for hemin alone. The proposed strategy of silver layer synthesis on gold nanoparticles catalyzed by DNAzyme is an innovative approach and can be applied in bioanalysis (LSPR, electrochemistry) as well as in material sciences.