Search Results

Now showing 1 - 10 of 19
  • Item
    Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Emmrich, Etienne; Lasarzik, Robert
    A nonlinear model due to Soddemann et al. [37] and Stewart [38] describing incompressible smectic-A liquid crystals under flow is studied. In comparison to previously considered models, this particular model takes into account possible undulations of the layers away from equilibrium, which has been observed in experiments. The emerging decoupling of the director and the layer normal is incorporated by an additional evolution equation for the director. Global existence of weak solutions to this model is proved via a Galerkin approximation with eigenfunctions of the associated linear differential operators in the three-dimensional case.
  • Item
    Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Lasarzik, Robert
    In this article, we prove the existence of measure-valued solutions to the EricksenLeslie system equipped with the OseenFrank energy. We introduce the concept of generalized gradient Young measures. Via a Galerkin approximation, we show the existence of weak solutions to a regularized system and attain measure-valued solutions for vanishing regularization. Additionally, it is shown that the measure-valued solution fulfills an energy inequality.
  • Item
    Existence of weak solutions for the Cahn-Hilliard reaction model including elastic effects and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Kraus, Christiane; Roggensack, Arne
    In this paper, we introduce and study analytically a vectorial Cahn-Hilliard reaction model coupled with rate-dependent damage processes. The recently proposed Cahn-Hilliard reaction model can e.g. be used to describe the behavior of electrodes of lithium-ion batteries as it includes both the intercalation reactions at the surfaces and the separation into different phases. The coupling with the damage process allows considering simultaneously the evolution of a damage field, a second important physical effect occurring during the charging or discharging of lithium-ion batteries. Mathematically, this is realized by a Cahn-Larché system with a non-linear Newton boundary condition for the chemical potential and a doubly non-linear differential inclusion for the damage evolution. We show that this system possesses an underlying generalized gradient structure which incorporates the non-linear Newton boundary condition. Using this gradient structure and techniques from the field of convex analysis we are able to prove constructively the existence of weak solutions of the coupled PDE system.
  • Item
    Existence results for a contact problem with varying friction coefficient and nonlinear forces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Schmid, Florian; Mielke, Alexander
    We consider the rate-independent problem of a particle moving in a three - dimensional half space subject to a time-dependent nonlinear restoring force having a convex potential and to Coulomb friction along the flat boundary of the half space, where the friction coefficient may vary along the boundary. Our existence result allows for solutions that may switch arbitrarily often between unconstrained motion in the interior and contact where the solutions may switch between sticking and frictional sliding. However, our existence result is local and guarantees continuous solutions only as long as the convexity of the potential is strong enough to compensate the variation of the friction coefficient times the contact pressure. By simple examples we show that our sufficient conditions are also necessary. Our method is based on the energetic formulation of rate-independent systems as developed by Mielke and co-workers. We generalize the time-incremental minimization procedure of Mielke and Rossi for the present situation of a non-associative flow rule.
  • Item
    Electro-reaction-diffusion systems in heterostructures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2000) Glitzky, Annegret; Hünlich, Rolf
    The paper is devoted to the mathematical investigation of a general class of electro-reaction-diffusion systems with nonsmooth data which arises in applications to semiconductor technology. Besides of a basic problem, a reduced problem is considered which is obtained if the kinetics of the free carriers is fast. For two dimensional domains we prove a global existence and uniqueness result. In addition, asymptotic properties of solutions are studied. Basic ideas are energy estimates, Moser iteration, regularization techniques and an existence result for electro-diffusion systems with weakly nonlinear volume and boundary source terms which is proved in the paper, too. The relationship between the property that the energy functional decays exponentially in time to its equilibrium value and the existence of global positive lower bounds for the densities of the species is investigated. We illustrate relations between the model and its reduced version in general and for concrete examples. Finally, we discuss the special features of heterostructures for simplified model problems.
  • Item
    A new type of identification problems: Optimizing the fractional order in a nonlocal evolution equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Sprekels, Jürgen; Valdinoci, Enrico
    In this paper, we consider a rather general linear evolution equation of fractional type, namely a diffusion type problem in which the diffusion operator is the sth power of a positive definite operator having a discrete spectrum in R+. We prove existence, uniqueness and differentiability properties with respect to the fractional parameter s. These results are then employed to derive existence as well as first-order necessary and second-order sufficient optimality conditions for a minimization problem, which is inspired by considerations in mathematical biology. In this problem, the fractional parameter s serves as the control parameter that needs to be chosen in such a way as to minimize a given cost functional. This problem constitutes a new class of identification problems: while usually in identification problems the type of the differential operator is prescribed and one or several of its coefficient functions need to be identified, in the present case one has to determine the type of the differential operator itself. This problem exhibits the inherent analytical difficulty that with changing fractional parameter s also the domain of definition, and thus the underlying function space, of the fractional operator changes.
  • Item
    Nonlocal isoperimetric problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Castro, Agnese di; Novaga, Matteo; Ruffini, Berardo; Valdinoci, Enrico
    We characterize the volume-constrained minimizers of a nonlocal free energy given by the difference of fractional perimeters. Exploiting the quantitative fractional isoperimetric inequality, we show that balls are the unique minimizers if the volume is sufficiently small, while the existence vs. nonexistence of minimizers for large volumes remains open. We also consider the corresponding isoperimetric problem and prove existence and regularity of minimizers.
  • Item
    A temperature-dependent phase-field model for phase separation and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [21, 22]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of entropic weak solutions, resorting to a solvability concept first introduced in [10] in the framework of Fourier-Navier-Stokes systems and then recently employed in [9, 38] for the study of PDE systems for phase transition and damage. Our global-intime existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.
  • Item
    Stationary solutions to an energy model for semiconductor devices where the equations are defined on different domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Glitzky, Annegret; Hünlich, Rolf
    We discuss a stationary energy model from semiconductor modelling. We accept the more realistic assumption that the continuity equations for electrons and holes have to be considered only in a subdomain $Omega_0$ of the domain of definition $Omega$ of the energy balance equation and of the Poisson equation. Here $Omega_0$ corresponds to the region of semiconducting material, $OmegasetminusOmega_0$ represents passive layers. Metals serving as contacts are modelled by Dirichlet boundary conditions. We prove a local existence and uniqueness result for the two-dimensional stationary energy model. For this purpose we derive a $W^1,p$-regularity result for solutions of systems of elliptic equations with different regions of definition and use the Implicit Function Theorem.
  • Item
    Weak entropy solutions to a model in induction hardening, existence and weak-strong uniqueness
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hömberg, Dietmar; Lasarzik, Robert
    In this paper, we investigate a model describing induction hardening of steel. The related system consists of an energy balance, an ODE for the different phases of steel, and Maxwell's equations in a potential formulation. The existence of weak entropy solutions is shown by a suitable regularization and discretization technique. Moreover, we prove the weak-strong uniqueness of these solutions, i.e., that a weak entropy solutions coincides with a classical solution emanating form the same initial data as long as the classical one exists. The weak entropy solution concept has advantages in comparison to the previously introduced weak solutions, e.g., it allows to include free energy functions with low regularity properties corresponding to phase transitions.