Search Results

Now showing 1 - 10 of 21
  • Item
    Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate
    (Basel : MDPI, 2022) Al-Bataineh, Qais M.; Shpacovitch, Victoria; Sadiq, Diyar; Telfah, Ahmad; Hergenröder, Roland
    Complex composite films based on polyaniline (PANI) doped hydrochloric acid (HCl) incorporated with aluminum nitrate (Al(NO3)3) on Au-layer were designed and synthesized as a surface plasmon resonance (SPR) sensing device. The physicochemical properties of (PANI-HCl)/Al(NO3)3 complex composite films were studied for various Al(NO3)3 concentrations (0, 2, 4, 8, 16, and 32 wt.%). The refractive index of the (PANI-HCl)/Al(NO3)3 complex composite films increased continuously as Al(NO3)3 concentrations increased. The electrical conductivity values increased from 5.10 µS/cm to 10.00 µS/cm as Al(NO3)3 concentration increased to 32 wt.%. The sensitivity of the SPR sensing device was investigated using a theoretical approach and experimental measurements. The theoretical system of SPR measurement confirmed that increasing Al(NO3)3 in (PANI-HCl)/Al(NO3)3 complex composite films enhanced the sensitivity from about 114.5 [Deg/RIU] for Au-layer to 159.0 [Deg/RIU] for Au-((PANI-HCl)/Al(NO3)3 (32 wt.%)). In addition, the signal-to-noise ratio for Au-layer was 3.95, which increased after coating by (PANI-HCl)/Al(NO3)3 (32 wt.%) complex composite layer to 8.82. Finally, we conclude that coating Au-layer by (PANI-HCl)/Al(NO3)3 complex composite films enhances the sensitivity of the SPR sensing device.
  • Item
    The mTOR and PP2A pathways regulate PHD2 phosphorylation to Fine-Tune HIF1α levels and colorectal cancer cell survival under hypoxia
    (Amsterdam : Elsevier, 2017) Di Conza, Giusy; Cafarello, Sarah Trusso; Loroch, Stefan; Mennerich, Daniela; Deschoemaeker, Sofie; Di Matteo, Mario; Ehling, Manuel; Gevaert, Kris; Prenen, Hans; Zahedi, Rene Peiman; Sickmann, Albert; Kietzmann, Thomas; Moretti, Fabiola; Mazzone, Massimiliano
    Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth.
  • Item
    During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes
    (Maryland Heights, MO : Cell Press, 2022) Pylaeva, Ekaterina; Korschunow, Georg; Spyra, Ilona; Bordbari, Sharareh; Siakaeva, Elena; Ozel, Irem; Domnich, Maksim; Squire, Anthony; Hasenberg, Anja; Thangavelu, Kruthika; Hussain, Timon; Goetz, Moritz; Lang, Karl S; Gunzer, Matthias; Hansen, Wiebke; Buer, Jan; Bankfalvi, Agnes; Lang, Stephan; Jablonska, Jadwiga
    Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.
  • Item
    Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro
    (Heidelberg : Springer, 2022) Le-Trilling, Vu Thuy Khanh; Mennerich, Denise; Schuler, Corinna; Sakson, Roman; Lill, Julia K.; Kasarla, Siva Swapna; Kopczynski, Dominik; Loroch, Stefan; Flores-Martinez, Yulia; Katschinski, Benjamin; Wohlgemuth, Kerstin; Gunzer, Matthias; Meyer, Folker; Phapale, Prasad; Dittmer, Ulf; Sickmann, Albert; Trilling, Mirko
    Background: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. Results: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. Conclusions: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.
  • Item
    Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells
    (London : BioMed Central, 2013) Kinzebach, Sven; Dietz, Lisa; KlĂ¼ter, Harald; Thierse, Hermann-Josef; Bieback, Karen
    Background: Multilineage differentiation, immunomodulation and secretion of trophic factors render mesenchymal stromal cells (MSC) highly attractive for clinical application. Human platelet derivatives such as pooled human platelet lysate (pHPL) and thrombin-activated platelet releasate in plasma (tPRP) have been introduced as alternatives to fetal bovine serum (FBS) to achieve GMP-compliance. However, whereas both pHPL and tPRP support similar proliferation kinetics of lipoaspirate-derived MSC (LA-MSC), only pHPL significantly accelerates bone marrow-derived MSC (BM-MSC) expansion. To identify functionally bioactive factors affecting ex vivo MSC expansion, a differential proteomic approach was performed and identified candidate proteins were evaluated within a bioassay. Results: Two dimensional difference gel electrophoresis (2D-DIGE), MALDI-TOF analyses and complementary Western blotting revealed 20 differential protein species. 14 candidate proteins occured at higher concentrations in pHPL compared to tPRP and 6 at higher concentrations in tPRP. The candidate proteins fibrinogen and apolipoprotein A1 differentially affected LA- and BM-MSC proliferation. In a second set of experiments, reference cytokines known to foster proliferation in FBS were tested for their effects in the human supplements. Interestingly although these cytokines promoted proliferation in FBS, they failed to do so when added to the humanized system. Conclusions: The differential proteomic approach identified novel platelet derived factors differentially acting on human MSC proliferation. Complementary testing of reference cytokines revealed a lack of stimulation in the human supplements compared to FBS. The data describe a new coherent approach to combine proteomic technologies with functional testing to develop novel, humanized, GMP-compliant conditions for MSC expansion.
  • Item
    Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling
    (Amsterdam : Elsevier, 2013) Niewiadomski, Pawel; Kong, Jennifer H.; Ahrends, Robert; Ma, Yan; Humke, Eric W.; Khan, Sohini; Teruel, Mary N.; Novitch, Bennett G.; Rohatgi, Rajat
    Gli proteins are transcriptional effectors of the Hedgehog (Hh) pathway in both normal development and cancer. We describe a program of multisite phosphorylation that regulates the conversion of Gli proteins into transcriptional activators. In the absence of Hh ligands, Gli activity is restrained by the direct phosphorylation of six conserved serine residues by protein kinase A (PKA), a master negative regulator of the Hh pathway. Activation of signaling leads to a global remodeling of the Gli phosphorylation landscape: the PKA target sites become dephosphorylated, while a second cluster of sites undergoes phosphorylation. The pattern of Gli phosphorylation can regulate Gli transcriptional activity in a graded fashion, suggesting a phosphorylation-based mechanism for how a gradient of Hh signaling in a morphogenetic field can be converted into a gradient of transcriptional activity.
  • Item
    Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana
    (Oxford : Oxford University Press, 2015) Carrie, Chris; Venne, A. Saskia; Zahedi, RenĂ© P.; Soll, JĂ¼rgen
    Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing. We identified 88 and seven putative substrates for Arabidopsis ICP55 and OCT1, respectively. It was determined that the Arabidopsis ICP55 contains an almost identical cleavage site to that of Icp55 from yeast. However, it can also remove a far greater range of amino acids. The OCT1 substrates from Arabidopsis displayed no consensus cleavage motif, and do not contain the classical –10R motif identified in other eukaryotes. Arabidopsis OCT1 can also cleave presequences independently, without the prior cleavage of MPP. It was concluded that while both OCT1 and ICP55 were probably acquired early on in the evolution of mitochondria, their substrate profiles and cleavage sites have either remained very similar or diverged completely.
  • Item
    Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol
    (Cambridge : eLife Sciences Publications, 2014) Hoffmann, Jan-Erik; Fermin, Yessica; Stricker, Ruth LO; Ickstadt, Katja; Zamir, Eli
    How can the integrin adhesome get self-assembled locally, rapidly, and correctly as diverse cell-matrix adhesion sites? Here, we investigate this question by exploring the cytosolic state of integrin-adhesome components and their dynamic exchange between adhesion sites and cytosol. Using fluorescence cross-correlation spectroscopy (FCCS) and fluorescence recovery after photobleaching (FRAP) we found that the integrin adhesome is extensively pre-assembled already in the cytosol as multi-protein building blocks for adhesion sites. Stationary focal adhesions release symmetrically the same types of protein complexes that they recruit, thereby keeping the cytosolic pool of building blocks spatiotemporally uniform. We conclude a model in which multi-protein building blocks enable rapid and modular self-assembly of adhesion sites and symmetric exchange of these building blocks preserves their specifications and thus the assembly logic of the system.
  • Item
    Experimental validation of computerised models of clustering of platelet glycoprotein receptors that signal via tandem SH2 domain proteins
    (San Francisco, Calif. : Public Library of Science, 2022) Maqsood, Zahra; Clark, Joanne C.; Martin, Eleyna M.; Cheung, Yam Fung Hilaire; MorĂ¡n, Luis A.; Watson, Sean E. T.; Pike, Jeremy A.; Di, Ying; Poulter, Natalie S.; Slater, Alexandre; Lange, Bodo M. H.; Nieswandt, Bernhard; Eble, Johannes A.; Tomlinson, Mike G.; Owen, Dylan M.; Stegner, David; Bridge, Lloyd J.; Wierling, Christoph; Watson, Steve P.
    The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects.
  • Item
    Interaction of proteins identified in human thyroid cells
    (Basel : MDPI, 2013) Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela
    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.