Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation

2015, Matsidik, Rukiya, Komber, Hartmut, Luzio, Alessandro, Caironi, Mario, Sommer, Michael

A highly efficient, simple, and environmentally friendly protocol for the synthesis of an alternating naphthalene diimide bithiophene copolymer (PNDIT2) via direct arylation polycondensation (DAP) is presented. High molecular weight (MW) PNDIT2 can be obtained in quantitative yield using aromatic solvents. Most critical is the suppression of two major termination reactions of NDIBr end groups: nucleophilic substitution and solvent end-capping by aromatic solvents via C–H activation. In situ solvent end-capping can be used to control MW by varying monomer concentration, whereby end-capping is efficient and MW is low for low concentration and vice versa. Reducing C–H reactivity of the solvent at optimized conditions further increases MW. Chain perfection of PNDIT2 is demonstrated in detail by NMR spectroscopy, which reveals PNDIT2 chains to be fully linear and alternating. This is further confirmed by investigating the optical and thermal properties as a function of MW, which saturate at Mn ≈ 20 kDa, in agreement with controls made by Stille coupling. Field-effect transistor (FET) electron mobilities μsat up to 3 cm2/(V·s) are measured using off-center spin-coating, with FET devices made from DAP PNDIT2 exhibiting better reproducibility compared to Stille controls.

Loading...
Thumbnail Image
Item

Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene

2017, Liu, F., Krylov, D.S., Spree, L., Avdoshenko, S.M., Samoylova, N.A., Rosenkranz, M., Kostanyan, A., Greber, T., Wolter, A.U.B., Büchner, B., Popov, A.A.

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.

Loading...
Thumbnail Image
Item

Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5

2024, He, Ge, Peis, Leander, Cuddy, Emma Frances, Zhao, Zhen, Li, Dong, Zhang, Yuhang, Stumberger, Romona, Moritz, Brian, Yang, Haitao, Gao, Hongjun, Devereaux, Thomas Peter, Hackl, Rudi

The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 2Δmax/kBTCDW≈20, far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.

Loading...
Thumbnail Image
Item

Few-femtosecond passage of conical intersections in the benzene cation

2017, Galbraith, M.C.E., Scheit, S., Golubev, N.V., Reitsma, G., Zhavoronkov, N., Despré, V., Lépine, F., Kuleff, A.I., Vrakking, M.J.J., Kornilov, O., Köppel, H., Mikosch, J.

Observing the crucial first few femtoseconds of photochemical reactions requires tools typically not available in the femtochemistry toolkit. Such dynamics are now within reach with the instruments provided by attosecond science. Here, we apply experimental and theoretical methods to assess the ultrafast nonadiabatic vibronic processes in a prototypical complex system - the excited benzene cation. We use few-femtosecond duration extreme ultraviolet and visible/near-infrared laser pulses to prepare and probe excited cationic states and observe two relaxation timescales of 11 ± 3 fs and 110 ± 20 fs. These are interpreted in terms of population transfer via two sequential conical intersections. The experimental results are quantitatively compared with state-of-the-art multi-configuration time-dependent Hartree calculations showing convincing agreement in the timescales. By characterising one of the fastest internal conversion processes studied to date, we enter an extreme regime of ultrafast molecular dynamics, paving the way to tracking and controlling purely electronic dynamics in complex molecules.

Loading...
Thumbnail Image
Item

X-ray imaging of chemically active valence electrons during a pericyclic reaction

2014, Bredtmann, T., Ivanov, M., Dixit, G.

Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions.