Search Results

Now showing 1 - 10 of 48
  • Item
    A simple stress-based cliff-calving law
    (Göttingen : Copernicus GmbH, 2019) Schlemm, T.; Levermann, A.
    Over large coastal regions in Greenland and Antarctica the ice sheet calves directly into the ocean. In contrast to ice-shelf calving, an increase in calving from grounded glaciers contributes directly to sea-level rise. Ice cliffs with a glacier freeboard larger than ≈100 m are currently not observed, but it has been shown that such ice cliffs are increasingly unstable with increasing ice thickness. This cliff calving can constitute a self-amplifying ice loss mechanism that may significantly alter sea-level projections both of Greenland and Antarctica. Here we seek to derive a minimalist stress-based parametrization for cliff calving from grounded glaciers whose freeboards exceed the 100 m stability limit derived in previous studies. This will be an extension of existing calving laws for tidewater glaciers to higher ice cliffs.

    To this end we compute the stress field for a glacier with a simplified two-dimensional geometry from the two-dimensional Stokes equation. First we assume a constant yield stress to derive the failure region at the glacier front from the stress field within the glacier. Secondly, we assume a constant response time of ice failure due to exceedance of the yield stress. With this strongly constraining but very simple set of assumptions we propose a cliff-calving law where the calving rate follows a power-law dependence on the freeboard of the ice with exponents between 2 and 3, depending on the relative water depth at the calving front. The critical freeboard below which the ice front is stable decreases with increasing relative water depth of the calving front. For a dry water front it is, for example, 75 m. The purpose of this study is not to provide a comprehensive calving law but to derive a particularly simple equation with a transparent and minimalist set of assumptions.

  • Item
    Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle
    (Göttingen : Copernicus GmbH, 2014) Boysen, L.R.; Brovkin, V.; Arora, V.K.; Cadule, P.; De Noblet-Ducoudré, N.; Kato, E.; Pongratz, J.; Gayler, V.
    Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006-2100, LULCC causes the atmospheric CO2concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between g 0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC.
  • Item
    Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis
    (Göttingen : Copernicus GmbH, 2019) Levermann, A.; Feldmann, J.
    Recent observations and ice-dynamic modeling suggest that a marine ice-sheet instability (MISI) might have been triggered in West Antarctica. The corresponding outlet glaciers, Pine Island Glacier (PIG) and Thwaites Glacier (TG), showed significant retreat during at least the last 2 decades. While other regions in Antarctica have the topographic predisposition for the same kind of instability, it is so far unclear how fast these instabilities would unfold if they were initiated. Here we employ the concept of similitude to estimate the characteristic timescales of several potentially MISI-prone outlet glaciers around the Antarctic coast. Our results suggest that TG and PIG have the fastest response time of all investigated outlets, with TG responding about 1.25 to 2 times as fast as PIG, while other outlets around Antarctica would be up to 10 times slower if destabilized. These results have to be viewed in light of the strong assumptions made in their derivation. These include the absence of ice-shelf buttressing, the one-dimensionality of the approach and the uncertainty of the available data. We argue however that the current topographic situation and the physical conditions of the MISI-prone outlet glaciers carry the information of their respective timescale and that this information can be partially extracted through a similitude analysis.
  • Item
    Damage functions for climate-related hazards: Unification and uncertainty analysis
    (Göttingen : Copernicus GmbH, 2016) Prahl, B.F.; Rybski, D.; Boettle, M.; Kropp, J.P.
  • Item
    Quantifying the effect of sea level rise and flood defence - A point process perspective on coastal flood damage
    (Göttingen : Copernicus GmbH, 2016) Boettle, M.; Rybski, D.; Kropp, J.P.
  • Item
    Modelling flood damages under climate change conditions-a case study for Germany
    (Göttingen : Copernicus GmbH, 2014) Hattermann, F.F.; Huang, S.; Burghoff, O.; Willems, W.; Österle, H.; Büchner, M.; Kundzewicz, Z.
    The aim of the study is to analyze and discuss possible climate change impacts on flood damages in Germany. The study was initiated and supported by the German insurance sector whereby the main goal was to identify general climate-related trends in flood hazard and damages and to explore sensitivity of results to climate scenario uncertainty. The study makes use of climate scenarios regionalized for the main river basins in Germany. A hydrological model (SWIM) that had been calibrated and validated for the main river gauges, was applied to transform these scenarios into discharge for more than 5000 river reaches. Extreme value distribution has been fitted to the time series of river discharge to derive the flood frequency statistics. The hydrological results for each river reach have been linked using the flood statistics to related damage functions provided by the German Insurance Association, considering damages on buildings and small enterprises. The result is that, under the specific scenario conditions, a considerable increase in flood related losses can be expected in Germany in future, warmer, climate.
  • Item
    Brief Communication: An update of the article "modelling flood damages under climate change conditions-a case study for Germany"
    (Göttingen : Copernicus GmbH, 2016) Fokko Hattermann, F.; Huang, S.; Burghoff, O.; Hoffmann, P.; Kundzewicz, Z.W.
  • Item
    Comparison of storm damage functions and their performance
    (Göttingen : Copernicus GmbH, 2015) Prahl, B.F.; Rybski, D.; Burghoff, O.; Kropp, J.P.
  • Item
    Hydrological extremes and security
    (Göttingen : Copernicus GmbH, 2015) Kundzewicz, Z.W.; Matczak, P.
  • Item
    The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): Rationale and experimental protocol for CMIP6
    (Göttingen : Copernicus GmbH, 2018) Keller, D.P.; Lenton, A.; Scott, V.; Vaughan, N.E.; Bauer, N.; Ji, D.; Jones, C.D.; Kravitz, B.; Muri, H.; Zickfeld, K.
    The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention - deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2gC, and all emission scenarios that do not exceed 1.5gC warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.