Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination

2018, Kaiser, Selina K., Lin, Ronghe, Mitchell, Sharon, Fako, Edvin, Krumeich, Frank, Hauert, Roland, Safonova, Olga V., Kondratenko, Vita A., Kondratenko, Evgenii V., Collins, Sean M., Midgley, Paul A., López, Núria, Pérez-Ramírez, Javier

Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting

2020, Hermans Y., Klein A., Sarker H.P., Huda M.N., Junge H., Toupance T., Jaegermann W.

CuFeO2 is recognized as a potential photocathode for photo(electro)chemical water splitting. However, photocurrents with CuFeO2-based systems are rather low so far. In order to optimize charge carrier separation and water reduction kinetics, defined CuFeO2/Pt, CuFeO2/Ag, and CuFeO2/NiOx(OH)y heterostructures are made in this work through a photodeposition procedure based on a 2H CuFeO2 hexagonal nanoplatelet shaped powder. However, water splitting performance tests in a closed batch photoreactor show that these heterostructured powders exhibit limited water reduction efficiencies. To test whether Fermi level pinning intrinsically limits the water reduction capacity of CuFeO2, the Fermi level tunability in CuFeO2 is evaluated by creating CuFeO2/ITO and CuFeO2/H2O interfaces and analyzing the electronic and chemical properties of the interfaces through photoelectron spectroscopy. The results indicate that Fermi level pinning at the Fe3+/Fe2+ electron polaron formation level may intrinsically prohibit CuFeO2 from acquiring enough photovoltage to reach the water reduction potential. This result is complemented with density functional theory calculations as well. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Mechanistic insight of TiCl4catalyzed formal [3 + 3] cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles

2015, Nisa, Riffat Un, Maria, Maria, Wasim, Fatima, Mahmood, Tariq, Ludwig, Ralf, Ayub, Khurshid

The mechanism of TiCl4 mediated formal [3 + 3] cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles is studied at the B3LYP level of density functional theory (DFT) to rationalize the experimental regioselectivity. Methyl and trifluoromethyl substituted 1,3 dielectrophiles are studied theoretically since they show different regioselectivities. Two different mechanisms involving 1,2 and 1,4 addition of 1,3-bis(silyl enol ethers) on 1,3-dielectrophiles are studied for each dienophile. The intramolecular transition metal catalyzed and non-catalyzed dynamic shift of the silyl moiety is also studied. The structure of the 1,3 dienophile and the associated Mulliken charges are the driving forces for different regioselectivities in methyl and trifluoromethyl dienophiles.

Loading...
Thumbnail Image
Item

Acridinedione as selective flouride ion chemosensor: A detailed spectroscopic and quantum mechanical investigation

2018, Iqbal, Nafees, Ali, Syed Abid, Munir, Iqra, Khan, Saima, Ayub, Khurshid, al-Rashida, Mariya, Islam, Muhammad, Shafiq, Zahid, Ludwig, Ralf, Hameed, Abdul

The use of small molecules as chemosensors for ion detection is rapidly gaining popularity by virtue of the advantages it offers over traditional ion sensing methods. Herein we have synthesized a series of acridine(1,8)diones (7a-7l) and explored them for their potential to act as chemosensors for the detection of various anions such as fluoride (F-), acetate (OAc-), bromide (Br-), iodide (I-), bisulfate (HSO4-), chlorate (ClO3-), perchlorate (ClO4-), cyanide (CN-), and thiocyanate (SCN-). Acridinediones were found to be highly selective chemosensors for fluoride ions only. To investigate in detail the mechanism of selective fluoride ion sensing, detailed spectroscopic studies were carried out using UV-visible, fluorescence and 1H NMR spectroscopy. Fluoride mediated (NH) proton abstraction of acridinedione was found to be responsible for the observed selective fluoride ion sensing. Quantum mechanical computational studies, using time dependent density functional theory (TDDFT) were also carried out, whereupon comparison of acridinedione interaction with fluoride and acetate ions explained the acridinedione selectivity for the detection of fluoride anions. Our results provide ample evidence and rationale for further modulation and exploration of acridinediones as non-invasive chemosensors for fluoride ion detection in a variety of sample types.

Loading...
Thumbnail Image
Item

A comprehensive analysis of the history of DFT based on the bibliometric method RPYS

2019, Haunschild, Robin, Barth, Andreas, French, Bernie

This bibliometric study aims at providing a comprehensive analysis of the history of density functional theory (DFT) from a perspective of chemistry by using reference publication year spectroscopy (RPYS). 114,138 publications with their 4,412,152 non-distinct cited references are analyzed. The RPYS analysis revealed three different groups of seminal papers which researchers in DFT have drawn from: (i) some long-known experimental studies from the 19th century about physical and chemical phenomena were referenced rather frequently in contemporary DFT publications. (ii) Fundamental quantum-chemical papers from the time period 1900–1950 which predate DFT form another group of seminal papers. (iii) Finally, various very frequently employed DFT approximations, basis sets, and other techniques (e.g., implicit descriptions of solvents) constitute another group of seminal papers. The earliest cited reference we found was published in 1806. The references to papers published in the 19th century mainly served the purpose of referring to long-known physical and chemical phenomena which were used to test if DFT approximations deliver correct results (e.g., Van der Waals interactions). The foundational papers of DFT by Hohenberg and Kohn as well as Kohn and Sham do not seem to be affected by obliteration by incorporation as they appear as pronounced peaks in our RPYS analysis. Since the 1990s, only very few pronounced peaks occur as most years were referenced nearly equally often. Exceptions are 1993 and 1996 due to seminal papers by Axel Becke, John P. Perdew and co-workers, and Georg Kresse and co-workers.

Loading...
Thumbnail Image
Item

Structural stability, electronic, optical, and thermoelectric properties of layered perovskite Bi2LaO4I

2022, Joshi, Radha K., Bhandari, Shalika R., Ghimire, Madhav Prasad

Layered perovskites are an interesting class of materials due to their possible applications in microelectronics and optoelectronics. Here, by means of density functional theory calculations, we investigated the structural, elastic, electronic, optical, and thermoelectric properties of the layered perovskite Bi2LaO4I within the parametrization of the standard generalized gradient approximation (GGA). The transport coefficients were evaluated by adopting Boltzmann semi-classical theory and a collision time approach. The calculated elastic constants were found to satisfy the Born criteria, indicating that Bi2LaO4I is mechanically stable. Taking into account spin-orbit coupling (SOC), the material was found to be a non-magnetic insulator, with an energy bandgap of 0.82 eV (within GGA+SOC), and 1.85 eV (within GGA+mBJ+SOC). The optical-property calculations showed this material to be optically active in the visible and ultraviolet regions, and that it may be a candidate for use in optoelectronic devices. Furthermore, this material is predicted to be a potential candidate for use in thermoelectric devices due to its large value of power factor, ranging from 2811 to 7326 μW m−1 K−2, corresponding to a temperature range of 300 K to 800 K.

Loading...
Thumbnail Image
Item

Graphene and silicene quantum dots for nanomedical diagnostics

2019, Drissi, L. B., Ouarrad, H., Ramadan, F. Z., Fritzsche, W.

In the present work, the prominent effects of edge functionalization, size variation and base material on the structural, electronic and optical properties of diamond shaped graphene and silicene quantum dots are investigated. Three functional groups, namely (-CH3, -OH and -COOH) are investigated using the first principles calculations based on the density functional, time-dependent density functional and many-body perturbation theories. Both the HOMO-LUMO energy gap, the optical absorption and the photoluminescence are clearly modulated upon functionalization compared to the H-passivated counterparts. Besides the functional group, the geometric distortion induced in some QDs also influences their optical features ranging from near ultra-violet to near infra-red. All these results indicate that edge-functionalizations provide a favorable key factor for adjusting the optoelectronic properties of quantum dots for a wide variety of nanomedical applications, including in vitro and in vivo bioimaging in medical diagnostics and therapy. This journal is © The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Highly Planarized Naphthalene Diimide-Bifuran Copolymers with Unexpected Charge Transport Performance

2017, Matsidik, Rukiya, Luzio, Alessandro, Askin, Özge, Fazzi, Daniele, Sepe, Alessandro, Steiner, Ullrich, Komber, Hartmut, Caironi, Mario, Sommer, Michael

The synthesis, characterization, and charge transport performance of novel copolymers PNDIFu2 made from alternating naphthalene diimide (NDI) and bifuran (Fu2) units are reported. Usage of potentially biomass-derived Fu2 as alternating repeat unit enables flattened polymer backbones due to reduced steric interactions between the imide oxygens and Fu2 units, as seen by density functional theory (DFT) calculations and UV-vis spectroscopy. Aggregation of PNDIFu2 in solution is enhanced if compared to the analogous NDI-bithiophene (T2) copolymers PNDIT2, occurring in all solvents and temperatures probed. PNDIFu2 features a smaller π-π stacking distance of 0.35 nm compared to 0.39 nm seen for PNDIT2. Alignment of aggregates in films is achieved by using off-center spin coating, whereby PNDIFu2 exhibits a stronger dichroic ratio and transport anisotropy in field-effect transistors (FET) compared to PNDIT2, with an overall good electron mobility of 0.21 cm2/(V s). Despite an enhanced backbone planarity, the smaller π-π stacking and the enhanced charge transport anisotropy, the electron mobility of PNDIFu2 is about three times lower compared to PNDIT2. Density functional theory calculations suggest that charge transport in PNDIFu2 is limited by enhanced polaron localization compared to PNDIT2.

Loading...
Thumbnail Image
Item

Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters

2016, Nisa, Riffat Un, Mahmood, Tariq, Ludwig, Ralf, Ayub, Khurshid

The mechanism of the Zn(II) catalyzed oxidation of benzylic alcohol to benzaldehyde and ester by H2O2 oxidant was investigated through density functional theory methods and compared with the similar oxidation mechanisms of other late transition metals. Both inner sphere and intermediate sphere mechanisms have been analyzed in the presence and absence of pyridine-2-carboxylic acid (ligand). An intermediate sphere mechanism involving the transfer of hydrogen from alcohol to H2O2 was found to be preferred over the competitive inner sphere mechanism involving β-hydride elimination. Kinetic barriers associated with the intermediate sphere mechanism are consistent with the experimental observations, suggesting that the intermediate sphere mechanism is a plausible mechanism under these reaction conditions. The oxidation of alcohols to aldehydes (first step) is kinetically more demanding than the oxidation of hemiacetals to esters (second step). Changing the oxidant to tert-butyl hydrogen peroxide (TBHP) increases the activation barrier for the oxidation of alcohol to aldehyde by 0.4 kcal mol−1, but decreases the activation barrier by 3.24 kcal mol−1 for oxidation of hemiacetal to ester. Replacement of zinc bromide with zinc iodide causes the second step to be more demanding than the first step. Pyridine-2-carboxylic acid ligand remarkably decreases the activation barriers for the intermediate sphere pathway, whereas a less pronounced inverse effect is estimated for the inner sphere mechanism.

Loading...
Thumbnail Image
Item

Novel quinoxaline based chemosensors with selective dual mode of action: nucleophilic addition and host–guest type complex formation

2016, Ishtiaq, Marium, Munir, Iqra, al-Rashida, Mariya, Maria, Maria, Ayub, Khurshid, Iqbal, Jamshed, Ludwig, Ralf, Khan, Khalid Mohammed, Ali, Syed Abid, Hameed, Abdul

New quinoxalinium salts 1–5 have been exploited as chemosensors via naked eye, UV-Vis absorption, fluorescence quenching and 1H NMR experiments. New sensors 1–5 showed a dual mode, nucleophilic addition and a host–guest type complex towards anion (F−, AcO− and ascorbate) detection. Small anions (F−/AcO−) showed nucleophilic addition at the C2 position of the quinoxalinium cation, while larger anions (ascorbate), revealed the formation of a host–guest type complex due to the steric hindrance posed by the C3 of the phenyl ring. Nucleophilic addition of small anions (F−/AcO−) leads to the de-aromatization of the quinoxalinium cation. However in the case of the larger anion, ascorbate, the host–guest type complex formation induces changes in the absorption/fluorescence signals of the quinoxalinium moiety. This selective binding has been confirmed on the basis of the 1H NMR spectroscopic technique, whereupon nucleophilic addition of small anions (F−/AcO−) was confirmed by monitoring the characteristic proton NMR signals of Ha and the methylene protons (CH2), which were clearly shifted in the cases of fluoride and acetate ion addition confirming the de-aromatization and nucleophilic addition. Whereas no such peak shifting was observed in the case of ascorbate ion addition confirming the non-covalent addition of ascorbate. Theoretical insight into the selectivity and complexation behavior of the ascorbate ion with the quinoxaline moiety is gained through density functional theory (DFT) calculations. Moreover, the absorption properties of these complexes are modeled theoretically, and compared with the experimental data. In addition, the thermal decomposition of sensors (1 and 2) has been studied by the means of differential scanning calorimetry (DSC), thermogravimetry (TG), and differential thermogravimetry (DTG) to signify their utility at variable temperatures.