Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Open Access im Blick! Mehr Sichtbarkeit von Open-Access-Publikationen in der Bibliothek – Projekt visOA

2020, Geith, Uwe, Kraß, Thomas

In order to bring Open Access publications more into the perception of library users, it is necessary to make them more visible. In the visOA project, carried out by the NTNM library of the INM, Open Access publications were clearly highlighted in the OPAC as well as in the Discovery System and in the publication lists of the INM. A self-programmed virtual journal display (VIDIJO) also offers a subject-specific selection of Open Access journals. The effectiveness of the measures taken in the project was verified by accompanying research.

Loading...
Thumbnail Image
Item

Das #vBIB20-Experiment: spontan, agil und virtuell

2020, Bielesch, Stefan, Engelkenmeier, Ute, Kösters, Jens, Petri, Nicole, Stöhr, Matti, Stummeyer, Sabine

After the cancellation of the 109th German Librarians' Day in Hannover, the #vBIB20 took place from 26-28 May 2020 as an alternative planned at short notice, which was conducted as a web conference. The article briefly examines from the point of view of the organisation (TIB Hannover, Association of Information and Library Professionals BIB) the challenges and experiences in the implementation of the pure online conference, which was unprecedented in the German-speaking library community on this scale.

Loading...
Thumbnail Image
Item

The effect of branched carbon nanotubes as reinforcing nano-filler in polymer nanocomposites

2022, Thompson, S.M., Talò, M., Krause, Beate, Janke, A., Lanzerotti, M., Capps, J., Lanzara, G., Lacarbonara, W.

This work discusses the mechanical and dissipative properties of nanocomposite materials made of a high-performance thermoplastic polymer (polybutylene terephthalate, PBT) integrated with branched carbon nanotubes (bCNTs) as nanofiller. The storage and loss moduli as well as the loss factor/damping ratio of the nanocomposites are experimentally characterized for increasing bCNT weight fractions (wt% bCNT) upon variations of the input cyclic strain amplitude and of the input frequency, respectively. The trends obtained for the nanocomposites mechanical properties indicate improvements both in storage and loss modulus by increasing the bCNT weight fraction from 0.5% to 2%. The striking differences between the damping capacities exhibited by CNT/polymer and bCNT/polymer nanocomposites are discussed to shed light onto the different underlined mechanics of the nanocomposites. Due to the stick–slip relative sliding motion of the polymer chains with respect to the straight CNTs, CNT/PBT nanocomposites are known to exhibit a peak in the damping vs. strain amplitude curves, past which, the damping capacity shows a monotonically increasing trend due to the conjectured sliding of the polymer crystals. On the other hand, we show for the first time that bCNT/PBT nanocomposites do not exhibit a peak in the damping capacity but rather a plateau after an initial drop at low strains. This behavior is attributed to the much reduced mobility of the branched CNTs and the lack of formation of crystalline structures around the bCNTs.

Loading...
Thumbnail Image
Item

Compact representations for efficient storage of semantic sensor data

2021, Karim, Farah, Vidal, Maria-Esther, Auer, Sören

Nowadays, there is a rapid increase in the number of sensor data generated by a wide variety of sensors and devices. Data semantics facilitate information exchange, adaptability, and interoperability among several sensors and devices. Sensor data and their meaning can be described using ontologies, e.g., the Semantic Sensor Network (SSN) Ontology. Notwithstanding, semantically enriched, the size of semantic sensor data is substantially larger than raw sensor data. Moreover, some measurement values can be observed by sensors several times, and a huge number of repeated facts about sensor data can be produced. We propose a compact or factorized representation of semantic sensor data, where repeated measurement values are described only once. Furthermore, these compact representations are able to enhance the storage and processing of semantic sensor data. To scale up to large datasets, factorization based, tabular representations are exploited to store and manage factorized semantic sensor data using Big Data technologies. We empirically study the effectiveness of a semantic sensor’s proposed compact representations and their impact on query processing. Additionally, we evaluate the effects of storing the proposed representations on diverse RDF implementations. Results suggest that the proposed compact representations empower the storage and query processing of sensor data over diverse RDF implementations, and up to two orders of magnitude can reduce query execution time.

Loading...
Thumbnail Image
Item

An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites

2017, Talò, Michela, Krause, Beate, Pionteck, Jürgen, Lanzara, Giulia, Lacarbonara, Walter

By leveraging on extensive morphological analysis of carbon nanotube nanocomposites, an update of the Eshelby-Mori-Tanaka method is proposed for a more accurate estimation of the nanocomposites effective elastic response. The experimental results are employed to overcome the main modeling limitations inherent in most common micromechanical theories, such as the perfect dispersion of the nanofiller and the uniformity of the nanofiller's aspect ratio within the nanocomposite. The actual variability of the CNTs aspect ratio and the CNTs degree of dispersion are experimentally measured and introduced in the proposed model by averaging the Eshelby tensor over the actual CNT lengths distribution and by accounting for the effective CNT volume fraction. The effects of the nanofiller morphology on the mechanical response of three different thermoplastic nanocomposites with low- and high-aspect ratio CNTs are explored, and monotonic tensile tests are performed to validate the predictions of the proposed model. A good agreement is found between the predicted nanocomposites elastic moduli and the experimental data.

Loading...
Thumbnail Image
Item

Persistent Identification Of Instruments

2020, Stocker, Markus, Darroch, Louise, Krahl, Rolf, Habermann, Ted, Devaraju, Anusuriya, Schwardmann, Ulrich, D'Onofrio, Claudio, Häggström, Ingemar

Instruments play an essential role in creating research data. Given the importance of instruments and associated metadata to the assessment of data quality and data reuse, globally unique, persistent and resolvable identification of instruments is crucial. The Research Data Alliance Working Group Persistent Identification of Instruments (PIDINST) developed a community-driven solution for persistent identification of instruments which we present and discuss in this paper. Based on an analysis of 10 use cases, PIDINST developed a metadata schema and prototyped schema implementation with DataCite and ePIC as representative persistent identifier infrastructures and with HZB (Helmholtz-Zentrum Berlin für Materialien und Energie) and BODC (British Oceanographic Data Centre) as representative institutional instrument providers. These implementations demonstrate the viability of the proposed solution in practice. Moving forward, PIDINST will further catalyse adoption and consolidate the schema by addressing new stakeholder requirements.

Loading...
Thumbnail Image
Item

Possibilities and Limitations of Photoactivatable Cytochalasin D for the Spatiotemporal Regulation of Actin Dynamics

2020, Nair, Roshna V., Zhao, Shifang, Terriac, Emmanuel, Lautenschläger, Franziska, Hetmanski, Joseph H.R., Caswell, Patrick T., del Campo, Aranzazu

The study of the actin cytoskeleton and related cellular processes requires tools to specifically interfere with actin dynamics in living cell cultures, ideally with spatiotemporal control and compatible with real time imaging. A phototriggerable derivative of the actin disruptor Cytochalasin D (CytoD) is described and tested here. It includes a nitroveratryloxycarbonyl (Nvoc) photoremovable protecting group (PPG) at the hydroxyl group at C7 of CytoD. The attachment of the PPG renders Nvoc-CytoD temporarily inactive, and enables light-dosed delivery of the active drug CytoD to living cells. This article presents the full structural and physicochemical characterization, the toxicity analysis. It is complemented with biological tests to show the time scales (seconds) and spatial resolution (cellular level) achievable with a UV source in a regular microscopy setup