Search Results

Now showing 1 - 10 of 13
  • Item
    Epitaxial growth and characterization of GeTe and GeTe/Sb2Te3 superlattices
    (Berlin : Humboldt-Universität zu Berlin, 2017) Wang, Rui Ning
    Die epitaktische Wachstum von GeTe Dünnschichten und Sb2Te3/GeTe Übergittern durch Molekularstrahlepitaxie wird auf drei verschiedenen Silizium Oberflächen gezeigt: Si(111)−(7×7), Si(111)−(√3×√3)R30°−Sb, und Si(111)−(1×1)−H. Mit Röntgenstrukturanalyse wird bewiesen, dass die epitaktische Beziehung der GeTe Schicht von der Oberflächepassievierung abhängig ist; auf einer passivierten Fläche können verdrehte Domänen unterdrückt sein. Dieses Verhalten ähnelt dem, welches bei 2D Materialien zu erwarten wäre, und wird auf die Schwäche der Resonanten ungebundenen Zustände zurückgeführt, die durch Peierls Verzerrung noch schwächer werden.
  • Item
    Growth of GaN nanowire ensembles in molecular beam epitaxy: Overcoming the limitations of their spontaneous formation
    (Berlin : Humboldt-Universität zu Berlin, 2018) Zettler, Johannes Kristian
    Dichte Ensembles aus GaN-Nanodrähten können in der Molekularstrahlepitaxie mithilfe eines selbstinduzierten Prozesses sowohl auf kristallinen als auch amorphen Substraten gezüchtet werden. Aufgrund der Natur selbstgesteuerter Prozesse ist dabei die Kontrolle über viele wichtige Ensembleparameter jedoch eingeschränkt. Die Arbeit adressiert genau diese Einschränkungen bei der Kristallzucht selbstinduzierter GaN-Nanodrähte. Konkret sind das Limitierungen bezüglich der Nanodraht-Durchmesser, die Nanodraht-Anzahl-/Flächendichte, der Koaleszenzgrad sowie die maximal realisierbare Wachstumstemperatur. Für jede dieser Einschränkungen werden Lösungen präsentiert, um die jeweilige Limitierung zu umgehen oder zu verschieben. Als Resultat wurde eine neue Klasse von GaN Nanodrähten mit bisher unerreichten strukturellen und optischen Eigenschaften geschaffen. Mithilfe eines Zwei-Schritt-Ansatzes, bei dem die Wachstumstemperatur während der Nukleationsphase erhöht wurde, konnte eine verbesserte Kontrolle über die Flächendichte, den Durchmesser und den Koaleszenzgrad der GaN-Nanodraht-Ensembles erreicht werden. Darüber hinaus werden Ansätze präsentiert, um die außerordentlich lange Inkubationszeit bei hohen Wachstumstemperaturen zu minimieren und damit wesentlich höhere Wachstumstemperaturen zu ermöglichen (bis zu 905°C). Die resulierenden GaN-Nanodraht-Ensembles weisen schmale exzitonische Übergänge mit sub-meV Linienbreiten auf, vergleichbar zu denen freistehender GaN-Schichten. Abschließend wurden Nanodrähte mit Durchmessern deutlich unterhalb von 10 nm fabriziert. Mithilfe eines Zersetzungsschrittes im Ultrahochvakuum direkt im Anschluss an die Wachstumsphase wurden reguläre Nanodraht-Ensembles verdünnt. Die resultierenden ultradünnen Nanodrähte weisen dielektrisches Confinement auf. Wir zeigen eine ausgeprägte exzitonische Emission von puren GaN-Nanodrähten mit Durchmessern bis hinab zu 6 nm.
  • Item
    Inferences of the deep solar meridional flow
    (Freiburg : Universität Freiburg, 2017) Böning, Vincent Gebhard Andreas
    Understanding the solar meridional flow is important for uncovering the origin of the solar activity cycle. Yet, recent helioseismic estimates of this flow have come to conflicting conclusions in deeper layers of the solar interior, i.e., at depths below about 0.9 solar radii. The aim of this thesis is to contribute to a better understanding of the deep solar meridional flow. Time-distance helioseismology is the major method for investigating this flow. In this method, travel times of waves propagating between pairs of locations on the solar surface are measured. Until now, the travel-time measurements have been modeled using the ray approximation, which assumes that waves travel along infinitely thin ray paths between these locations. In contrast, the scattering of the full wave field in the solar interior due to the flow is modeled in first order by the Born approximation. It is in general a more accurate model of the physics in the solar interior. In a first step, an existing model for calculating the sensitivity of travel-time measu- rements to solar interior flows using the Born approximation is extended from Cartesian to spherical geometry. The results are succesfully compared to the Cartesian ones and are tested for self-consistency. In a second step, the newly developed model is validated using an existing numerical simulation of linear wave propagation in the Sun. An inversion of artificial travel times for meridional flow shows excellent agreement for noiseless data and reproduces many features in the input flow profile in the case of noisy data. Finally, the new method is used to infer the deep meridional flow. I used Global Oscillation Network Group (GONG) data that were earlier analyzed using the ray approximation and I employed the same Substractive Optimized Local Averaging (SOLA) inversion technique as in the earlier study. Using an existing formula for the covariance of travel-time measurements, it is shown that the assumption of uncorrelated errors from earlier studies leads to errors in the inverted flows being underestimated by a factor of about two to four. The inverted meridional flow above about 0.85 solar radii confirms the earlier results from ray theory regarding the general pattern of the flow, especially regarding a shallow return flow at about 0.9 solar radii, with some differences in the magnitude of the flow. Below about 0.85 solar radii, the inversion result depends on the thresholds used in the singular value decomposition. One result is again similar to the original regarding its general single-cell shape. Other results show a multi-cell structure in the southern hemisphere with two or three cells stacked radially. However, both the single-cell and the multi-cell flow profiles are consistent with the measured travel times within the measurement errors. To reach an unambiguous conclusion on the meridional flow below about 0.85 solar radii, the errors in the measured travel times have to be decreased considerably in future studies. For now, I conclude that the existing controversy of recent measurements of the deep meridional flow is relaxed by properly taking the associated errors into account.
  • Item
    Epitaxial growth and ultrafast dynamics of GeSbTe alloys and GeTe/Sb2Te3 superlattices
    (Berlin : Humboldt-Universität zu Berlin, 2017) Bragaglia, Valeria
    In dieser Arbeit wird das Wachstum von dünnen quasi-kristallinen Ge-Sb-Te (GST) Schichten mittels Molekularstrahlepitaxie demonstriert, die zu einer geordneten Konfiguration von intrinsischen Kristallgitterfehlstellen führen. Es wird gezeigt, wie es eine Strukturanalyse basierend auf Röntgenstrahlbeugungssimulationen, Dichtefunktionaltheorie und Transmissionselektronenmikroskopie ermöglicht, eine eindeutige Beurteilung der Kristallgitterlückenanordnung in den GST-Proben vorzunehmen. Das Verständnis für die Ordnungsprozesse der Gitterfehlstellen erlaubt eine gezielte Einstellung des Ordnungsgrades selbst, der mit der Zusammensetzung und der Kristallphase des Materials in Zusammenhang steht. Auf dieser Basis wurde ein Phasendiagramm mit verschiedenen Wachstumsfenstern für GST erstellt. Des Weiteren wird gezeigt, dass man eine hohe Ordnung der Gitterfehlstellen in GST auch durch Ausheizprozesse und anhand von Femtosekunden-gepulster Laserkristallisation von amorphem Material erhält, das zuvor auf einem als Kristallisationsgrundlage dienenden Substrat abgeschiedenen wurde. Diese Erkenntnis ist bemerkenswert, da sie zeigt, dass sich kristalline GST Schichten mit geordneten Kristallgitterlücken durch verschiedene Herstellungsprozesse realisieren lassen. Darüber hinaus wurde das Wachstum von GeTe/Sb2Te3 Übergittern durchgeführt, deren Struktur die von GST mit geordneten Gitterfehlstellen widerspiegelt. Die Möglichkeit den Grad der Gitterfehlstellenordung in GST gezielt zu manipulieren wurde mit einer Studie der Transporteigenschaften kombiniert. Die Anwendung von großflächigen Charakterisierungsmethoden wie XRD, Raman und IR-Spektroskopie, erlaubte die Bestimmung der Phase und des Fehlstellenordnungsgrades von GST und zeigte eindeutig, dass die Fehlstellenordnung für den Metall-Isolator-Übergang (MIT) verantwortlich ist. Insbesondere wird durch das Vergleichen von XRD-Messungen mit elektrischen Messungen gezeigt, dass der Übergang von isolierend zu leitend erfolgt, sobald eine Ordnung der Kristallgitterlücken einsetzt. Dieses Phänomen tritt in der kubischen Kristallphase auf, wenn Gitterfehlstellen in GST von einem ungeordneten in einen geordneten Zustand übergehen. Im zweiten Teil des Kapitels wird eine Kombination aus FIR- und Raman-Spektroskopie zur Untersuchung der Vibrationsmoden und des Ladungsträgerverhaltens in der amorphen und der kristallinen Phase angewendet, um Aktivierungsenergien für die Elektronenleitung, sowohl für die kubische, als auch für die trigonale Kristallphase von GST zu bestimmen. Hier ist es wichtig zu erwähnen, dass, in Übereinstimmung mit Ergebnissen aus anderen Untersuchungen, das Auftauchen eines MIT beim Übergang zwischen der ungeordneten und der geordneten kubischen Phase beobachtet wurde. Schlussendlich wurden verschiedene sogenannte Pump/Probe Technik, bei der man das Material mit dem Laser anregt und die Röntgenstrahlung oder Terahertz (THz)-spektroskopie als Sonde nutzt, angewandt. Dies dient um ultra-schnelle Dynamiken zu erfassen, die zum Verständnis der Umschaltmechanismen nötig sind. Die Empfindlichkeit der THz-Messungen hinsichtlich der Leitfähigkeit, sowohl in GST, als auch in GeTe/Sb2Te3 Übergittern zeigte, dass die nicht-thermische Natur der Übergitterumschaltprozesse mit Grenzflächeneffekten zusammenhängt und . Der Ablauf wird mit beeindruckender geringer Laser-Fluenz erreicht. Dieses Ergebnis stimmt mit Berichten aus der Literatur überein, in denen ein Kristall-zu Kristallwechsel von auf Übergittern basierenden Speicherzellen für effizienter gehalten wird als GST Schmelzen, was zu einen ultra-schwachen Energieverbrauch führt.
  • Item
    Growth of graphene/hexagonal boron nitride heterostructures using molecular beam epitaxy
    (Berlin : Humboldt-Universität zu Berlin, 2018) Nakhaie, Siamak
    Zweidimensionale (2D) Materialien bieten eine Vielzahl von neuartigen Eigenschaften und sind aussichtsreich Kandidaten für ein breites Spektrum an Anwendungen. Da hexagonales Bornitrid (h-BN) für eine Integration in Heterostrukturen mit anderen 2D Materialien geeignet ist, erweckte dieses in letzter Zeit großes Interesse. Insbesondere van-der-Waals-Heterostrukturen, welche h-BN und Graphen verbinden, weisen viele potenzielle Vorteile auf, verbleiben in ihrer großflächigen Herstellung von kontinuierlichen Filmen allerdings problematisch. Diese Dissertation stellt eine Untersuchung betreffend des Wachstums von h-BN und vertikalen Heterostrukturen von Graphen und h-BN auf Ni-Substraten durch Molekularstrahlepitaxie (MBE) vor. Zuerst wurde das Wachstum von h-BN mittels elementarer B- und N-Quellen auf Ni als Wachstumssubstrat untersucht. Kristalline h-BN-Schichten konnten durch Raman-spektroskopie nachgewiesen werden. Wachstumsparameter für kontinuierliche und atomar dünne Schichten wurden erlangt. Das Keimbildungs- und Wachstumsverhalten so wie die strukturelle Güte von h-BN wurden mittels einer systemischen Veränderung der Wachstumstemperatur und -dauer untersucht. Die entsprechenden Beobachtungen wie der Änderungen der bevorzugten Keimbildungszentren, der Kristallgröße und der Bedeckung des h-BN wurden diskutiert. Ein Wachstum von großflächigen vertikalen h-BN/Graphen Heterostrukturen (h-BN auf Graphen) konnte mittels einem neuartigen, MBE-basierenden Verfahren demonstriert werden, welche es h-BN und Graphen jeweils erlaubt sich in der vorteilhaften Wachstumsumgebung, welche von Ni bereitgestellt wird, zu formen. In diesem Verfahren formt sich Graphen an der Schnittstelle von h-BN und Ni durch Präzipitation von zuvor in der Ni-Schicht eingebrachten C-Atomen. Schließlich konnte noch ein großflächiges Wachstum von Graphen/h-BN-Heterostrukturen (Graphen auf h-BN) durch das direkte abscheiden von C auf MBE-gewachsenen h-BN gezeigt werden.
  • Item
    Fabrication and characterization of graphene nanoribbons epitaxially grown on SiC(0001)
    (Berlin : Humboldt-Universität zu Berlin, 2018) Aranha Galves, Lauren
    Einzelschichten von Graphen-Nanobänders (GNRs) wurden auf SiC(0001)-Substraten mit zwei unterschiedlichen Fehlschnitten bei Temperaturen von 1410 bis 1460 °C synthetisiert. Das GNR-Wachstum lässt sich bei niedriger Stufenkantenhöhe am besten durch eine exponentielle Wachstumsrate, welche mit der Energiebarriere für die Ausdiffusion von Si korreliert ist. Anderseits wird bei Substraten mit höheren Stufenkanten eine nicht-exponentielle Rate beobachtet, was mit der Bildung von mehrlagigen Graphen an den Stufenkanten in Verbindung gebracht wird. Die Sauerstoffinterkalation von epitaktischen GNRs mittels Ausglühen an Luft von Bändern wird als nächstes untersucht, welche auf unterschiedlichen SiC-Substraten gewachsen wurden. Neben der Umwandlung von monolagigem zu zweilagigem Graphen in der Nähe der Stufenkanten von SiC, führt die Sauerstoffinterkalation zusätzlich zu der Bildung einer Oxidschicht auf den Terrassen des Substrats, was die zweilagigen GNRs elektrisch isoliert voneinander zurücklässt. Die elektrische Charakterisierung der zweilagigen GNRs zeigten dass die Bänder durch die Behandlung mit Sauerstoff elektrisch voneinander entkoppelt sind. Eine robuste Lochkonzentration von etwa 1x10¹³ cm-² und Mobilitäten von bis zu 700 cm²/(Vs) wurden für die GNRs mit einer typischen Breite von 100 nm bei Raumtemperatur gemessen. Wohl definierte Mesastrukturen gebildet mittels Elektronenstrahllithographie auf SiC-Substraten, wurde zuletzt untersucht. Die Charakterisierung des Ladungsträgertransports von GNRs die auf den Seitenwänden der strukturierten Terrassen gewachsen wurden, zeigt eine Mobilität im Bereich von 1000 bis 2000 cm²/(Vs), welche für verschiedene Strukturen auf der gesamten Probe homogen ist, was die Reproduzierbarkeit dieses Herstellungsverfahrens hervorhebt, sowie dessen Potential für die Implementierung in zukünftigen Technologien, welche auf epitaktischgewachsenene GNRs basieren.
  • Item
    Growth and properties of GaAs/(In,Ga)As core-shell nanowire arrays on Si
    (Berlin : Humboldt-Universität zu Berlin, 2018) Küpers, Hanno
    Diese Arbeit präsentiert Untersuchungen zum Wachstum von GaAs Nanodrähten (NWs) und (In,Ga)As Hüllen mittels Molekularstrahlepitaxie (MBE) mit sekundärem Fokus auf den optischen Eigenschaften solcher Kern-Hülle Strukturen. Das ortsselektive Wachstum von GaAs NWs auf mit Oxidmasken beschichteten Si Substraten wird untersucht, wobei der entscheidende Einfluss der Oberflächenpreparation auf die vertikale Ausbeute von NW Feldern aufgedeckt wird. Basierend auf diesen Ergebnissen wird ein zweistufiger Wachstumprozess präsentiert der es ermöglicht NWs mit dünner und gerade Morphologie zu erhalten ohne die vertikale Ausbeute zu verringern. Für die detaillierte Beschreibung der NW Form wird ein Wachstumsmo- dell entwickelt, das die Einflüsse der Veränderung der Tropfen Größe während des Wachstums sowie direktes des Wachstums auf den NW Seitenwänden umfassend beschreibt. Dieses Wachstumsmodell wird benutzt für die Vorhersage der NW Form über einen großen Parameterraum um geeignete Bedingungen für die Realisierung von erwünschten NW Formen und Dimensionen zu finden. Ausgehend von diesen NW Feldern werden die optimalen Parameter für das Wachstum von (In,Ga)As Hüllen untersucht und wir zeigen, dass die Anordnung der Materialquellen im MBE System die Materialqualität entscheidend beeinflusst. Die dreidimensionale Struktur der NWs in Kombination mit der Substratrotation und der Richtungsabhängigkeit der Materialflüsse in MBE resultieren in unterschiedlichen Flusssequenzen auf der NW Seitenfacette welche die Wachstumsdynamik und infolgedessen die Punktde- fektdichte bestimmen. An Proben mit optimaler (In,Ga)As Hülle und äußerer GaAs Hülle zeigen wir, dass thermionische Emission mit anschließender nichtstrahlender Rekombination auf der Oberfläche zu einem starken thermischen Verlöschen der Lumineszenz Intensität führt, welches durch das Hinzufügen einer AlAs Barrierenhülle zur äußeren Hüllenstruktur erfolgreich unterdrückt werden kann. Abschließend wird ein Prozess präsentiert der das ex-situ Tempern von NWs bei hohen Temperaturen ermöglicht, was in der Reduzierung von Inhomogenitäten in den (In,Ga)As Hüllenquantentöpfen führt und in beispiellosen optischen Eigenschaften resultiert.
  • Item
    In-situ transmission electron microscopy on high-temperature phase transitions of Ge-Sb-Te alloys
    (Berlin : Humboldt-Universität zu Berlin, 2018) Berlin, Katja
    Das Hochtemperaturverhalten beeinflusst viele verschiedene Prozesse von der Materialherstellung bis hin zur technologischen Anwendung. In-situ Transmissionselektronenmikroskopie (TEM) bietet die Möglichkeit, die atomaren Prozesse während struktureller Phasenübergänge direkt und in Realzeit zu beobachten. In dieser Arbeit wurde in-situ TEM angewendet, um die Reversibilität des Schmelz- und Kristallisationsprozesses, sowie das anisotropen Sublimationsverhaltens von Ge-Sb-Te (GST) Dünnschichten zu untersuchen. Die gezielte Probenpräparation für die erfolgreiche Beobachtung der Hochtemperatur-Phasenübergänge wird hervorgehoben. Die notwendige Einkapselung für die Beobachtung der Flüssigphase unter Vakuumbedingungen und die erforderliche sauberer Oberfläche für den Sublimationsprozess werden detailliert beschrieben. Außerdem wird die Elektronenenergieverlustspektroskopie eingesetzt um die lokale chemische Zusammensetzung vor und nach den Übergängen zu bestimmen. Die Untersuchung der Grenzflächenstruktur und Dynamik sowohl beim Phasenübergang fest-flüssig als auch flüssig-fest zeigt Unterschiede zwischen den beiden Vorgängen. Die trigonale Phase von GST weist beim Schmelzen eine teilweise geordnete Übergangszone an der fest-flüssig-Grenzfläche auf, während ein solcher Zwischenzustand bei der Erstarrung nicht entsteht. Außerdem läuft der Schmelzvorgang zeitlich linear ab, während die Kristallisation durch eine Wurzelabhängigkeit von der Zeit mit überlagerter Start-Stopp-Bewegung beschrieben werden kann. Der Einfluss der Substrat-Grenzfläche wird diskutiert und die Oberflächenenergie von GST bestimmt. Die anisotrope Dynamik führt beim Phasenübergang fest-gasförmig der kubischen Phase von GST zur Ausbildung stabiler {111} Facetten. Dies erfolgt über die Bildung von Kinken und Stufen auf stabilen Terrassen. Die Keimbildungsrate und die bevorzugten Keimbildungsorte der Kinken wurden identifiziert und stimmen mit den Voraussagen des Terrassen-Stufen-Kinken Modells überein.
  • Item
    Open Educational Resources als neue Aufgabe für Wissenschaftliche Bibliotheken
    (Hannover : Hochschule Hannover, 2017) Stummeyer, Sabine
    Open Educational Resources (OER) sind sich in Deutschland bisher hauptsächlich im Bereich der schulischen Bildung im Gespräch. Ihr Potential innerhalb der deutschen Hochschullehre wurde zwar bereits erkannt, wird aber bisher noch nicht genutzt. Die Arbeit gibt einen Überblick über die terminologischen Grundlagen von OER und ihren Entwicklungsmöglichkeiten im Hochschulbereich. In einer Zusammenfassung werden die Förderung von OER durch die Europäische Kommission und in Deutschland, sowie ihre Entwicklung im deutschen Hochschulbereich dargestellt. In einem theoretischen Abgleich aktueller Studien und Fachliteratur wird eine Bestandsaufnahme zu neuen Aufgabenbereichen für Wissenschaftlicher Bibliotheken durch OER durchgeführt. Eine Expertenbefragung, die beispielhaft unter Lehrenden der Leibniz Universität Hannover (LUH) durchgeführt wurde, gibt Aufschluss über deren aktuellen Nutzungsstand von OER. Die wird ergänzt durch eine Untersuchung zweier Sharingdienste (Zenodo und SlideShare) nach freien Lehrmaterialien von Angehörigen der LUH. Abschließend werden auf der Basis der theoretischen Möglichkeiten sowie der individuellen Bedürfnisse der Lehrenden Empfehlungen für neue Dienstleistungen und Serviceangebote Wissenschaftlicher Bibliotheken zur Unterstützung der Hochschulen bei der Einführung, Herstellung und Verbreitung von OER am Beispiel der Technischen Informationsbibliothek Hannover (TIB) gegeben, sowie neue Aufgabenbereiche für Hochschulbibliotheken skizziert, die sich daraus ergeben.
  • Item
    Growth kinetics, thermodynamics, and phase formation of group-III and IV oxides during molecular beam epitaxy
    (Berlin : Humboldt-Universität zu Berlin, 2017) Vogt, Patrick
    Die vorliegende Arbeit präsentiert eine erste umfassende Wachstumsstudie, und erste quantitative Wachstumsmodelle, von Gruppe-III und IV Oxiden synthetisiert mit sauerstoffplasmaunterstützter Molekularstrahlepitaxie (MBE). Diese entwickelten Modelle beinhalten kinetische und thermodynamische Effekte. Die erworbenen Erkenntnisse sind auf fundamentale Wachstumsprozesse in anderen Syntheseverfahren übertragbar, wie zum Beispiel der Laserdeposition oder metallorganische Gasphasenepitaxie. Die Wachstumsraten und Desorptionsraten werden in-situ mit Laser-Reflektometrie bzw. Quadrupol-Massenspektrometrie (QMS) bestimmt. Es werden die transparenten halbleitenden Oxide Ga2O3, In2O3 und SnO2 untersucht. Es ist bekannt, dass sich das Wachstum von Gruppe-III und IV Oxiden, aufgrund der Existenz von Suboxiden, fundamental von anderen halbleitenden Materialien unterscheidet. Es stellt sich heraus, dass die Wachstumsrate der untersuchten binären Oxide durch die Formierung und Desorption von Suboxiden flussstöchiometrisch und thermisch limitiert ist. Es werden die Suboxide Ga2O für Ga2O3, In2O für In2O3 und SnO für SnO2 identifiziert. Ein Suboxid ist ein untergeordneter Oxidationszustand, und es wird gezeigt, dass die untersuchten Oxide über einen Zwei-Stufen-Prozess gebildet werden: vom Metall zum Suboxid, und weiterer Oxidation vom Suboxid zum thermodynamisch stabilen festen Metalloxid. Dieser Zwei-Stufen-Prozess ist die Basis für die Entwicklung eines ersten quantitativen, semiempirschen MBE-Wachstumsmodells für binare Oxide die Suboxide besitzen. Dieses Model beschreibt und erklärt die gemessenen Wachstumsraten und Desorptionsraten. Es wird die Kinetik und Thermodynamik des ternären Oxidsystems (InxGa1−x)2O3 untersucht. Die gemittelten Einbauraten von In und Ga in ein makroskopisches Volumen von (InxGa1−x)2O3 Dünnschichten werden ex-situ mit energiedispersiver Röntgenspektroskopie gemessen. Diese Einbauraten werden systematisch analysiert und im Rahmen kinetischer und thermodynamischer Grenzen beschrieben. Es wird gezeigt, dass Ga den In-Einbau in (InxGa1−x)2O3 aufgrund seiner stabileren Ga–O Bindungen thermodynamisch verhindert. In diesen Zusammenhang wird ein neuer katalytisch-tensidischer Effekt des In auf den Einbau von Ga gefunden. Eine Folge dieses katalytisch-tensidischen Effektes ist die Formierung der thermodynamisch, metastabilen hexagonalen Ga2O3 phase mit sehr hoher Kristallqualität. Ein thermodynamisch induziertes, kinetisches Wachstumsmodel für (InxGa1−x)2O3 wird entwickelt, mit dem sich alle makroskopischen Metall-Einbauraten und Desorptionsraten vorhersagen lassen. Mögliche (InxGa1−x)2O3 Strukturen gewachsen mit MBE werden mittels Röntgenkristallographie bestimmt. Mit Hilfe der Röntgenstrukturanalyse wird ein erster makroskopischer Ansatz zur Bestimmung der mikroskopischen In Konzentration X in möglichen (InXGa1−X)2O3 Phasen hergeleitet. Es werden Löslichkeitsgrenzen von In bzw. Ga in monoklinem und kubischem (InXGa1−X)2O3 bestimmt.