Search Results

Now showing 1 - 3 of 3
  • Item
    Aerosol Particle and Black Carbon Emission Factors of Vehicular Fleet in Manila, Philippines
    (Basel, Switzerland : MDPI AG, 2019) Madueño, Leizel; Kecorius, Simonas; Birmili, Wolfram; Müller, Thomas; Simpas, James; Vallar, Edgar; Galvez, Maria Cecilia; Cayetano, Mylene; Wiedensohler, Alfred
    Poor air quality has been identified as one of the main risks to human health, especially in developing regions, where the information on physical chemical properties of air pollutants is lacking. To bridge this gap, we conducted an intensive measurement campaign in Manila, Philippines to determine the emission factors (EFs) of particle number (PN) and equivalent black carbon (BC). The focus was on public utility jeepneys (PUJ), equipped with old technology diesel engines, widely used for public transportation. The EFs were determined by aerosol physical measurements, fleet information, and modeled dilution using the Operational Street Pollution Model (OSPM). The results show that average vehicle EFs of PN and BC in Manila is up to two orders of magnitude higher than European emission standards. Furthermore, a PUJ emits up to seven times more than a light-duty vehicles (LDVs) and contribute to more than 60% of BC emission in Manila. Unfortunately, traffic restrictions for heavy-duty vehicles do not apply to PUJs. The results presented in this work provide a framework to help support targeted traffic interventions to improve urban air quality not only in Manila, but also in other countries with a similar fleet composed of old-technology vehicles. © 2019 by the authors.
  • Item
    Office Indoor PM and BC Level in Lithuania: The Role of a Long-Range Smoke Transport Event
    (Basel : MDPI, 2021) Pauraite, Julija; Mainelis, Gediminas; Kecorius, Simonas; Minderytė, Agnė; Dudoitis, Vadimas; Garbarienė, Inga; Plauškaitė, Kristina; Ovadnevaite, Jurgita; Byčenkienė, Steigvilė
    While the impacts of climate change on wildfires and resulting air pollution levels have been observed, little is known about how indoor air filtering systems are performing under intensive smoke conditions. For this aim, particle number size distribution and concentration in a size range 0.5–18 μm and equivalent black carbon (eBC) mass concentration were measured in a modern office with a mechanical ventilation system. Measurements took place from 30 September to 6 October 2020 in the Center for Physical Sciences and Technology (FTMC) campus located in the urban background environment in Lithuania. During the measurement campaign, an intensive pollution episode, related to long-range transport wildfire smoke, was observed. The results indicated that the smoke event increased both indoor and outdoor eBC mass concentrations twice. Filters were non-selective for different eBC sources (biomass burning versus traffic) or chemical composition of carbonaceous aerosol particles (eBC versus brown carbon (BrC)). Air filtering efficiency was found to be highly dependent on particle size. During the smoke event the highest particle number concentration was observed at 2.1 μm and 1.0 μm size particles in outdoor and indoor air, respectively. Differences of indoor to outdoor ratio between event and non-event days were not significant. Because of lower removal rate for small particles, eBC had higher contribution to total PM2.5 mass concentration in indoor air than in outdoor air. The results gained are crucial for decision-making bodies in order to implement higher-quality air-filtering systems in office buildings and, as a result, minimize potential health impacts. © 2021 by the authors.
  • Item
    EURODELTA III exercise: An evaluation of air quality models’ capacity to reproduce the carbonaceous aerosol
    (Amsterdam : Elsevier, 2019) Mircea, Mihaela; Bessagnet, Bertrand; D'Isidoro, Massimo; Pirovano, Guido; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Tsyro, Svetlana; Manders, Astrid; Bieser, Johannes; Stern, Rainer; Vivanco, Marta García; Cuvelier, Cornelius; Aas, Wenche; Prévôt, André S.H.; Aulinger, Armin; Briganti, Gino; Calori, Giuseppe; Cappelletti, Andrea; Colette, Augustin; Couvidat, Florian; Fagerli, Hilde; Finardi, Sandro; Kranenburg, Richard; Rouïl, Laurence; Silibello, Camillo; Spindler, Gerald; Poulain, Laurent; Herrmann, Hartmut; Jimenez, Jose L.; Day, Douglas A.; Tiitta, Petri; Carbone, Samara
    The carbonaceous aerosol accounts for an important part of total aerosol mass, affects human health and climate through its effects on physical and chemical properties of the aerosol, yet the understanding of its atmospheric sources and sinks is still incomplete. This study shows the state-of-the-art in modelling carbonaceous aerosol over Europe by comparing simulations performed with seven chemical transport models (CTMs) currently in air quality assessments in Europe: CAMx, CHIMERE, CMAQ, EMEP/MSC-W, LOTOS-EUROS, MINNI and RCGC. The simulations were carried out in the framework of the EURODELTA III modelling exercise and were evaluated against field measurements from intensive campaigns of European Monitoring and Evaluation Programme (EMEP) and the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Model simulations were performed over the same domain, using as much as possible the same input data and covering four seasons: summer (1–30 June 2006), winter (8 January – 4 February 2007), autumn (17 September- 15 October 2008) and spring (25 February - 26 March 2009). The analyses of models’ performances in prediction of elemental carbon (EC) for the four seasons and organic aerosol components (OA) for the last two seasons show that all models generally underestimate the measured concentrations. The maximum underestimation of EC is about 60% and up to about 80% for total organic matter (TOM). The underestimation of TOM outside of highly polluted area is a consequence of an underestimation of secondary organic aerosol (SOA), in particular of its main contributor: biogenic secondary aerosol (BSOA). This result is independent on the SOA modelling approach used and season. The concentrations and daily cycles of total primary organic matter (TPOM) are generally better reproduced by the models since they used the same anthropogenic emissions. However, the combination of emissions and model formulation leads to overestimate TPOM concentrations in 2009 for most of the models. All models capture relatively well the SOA daily cycles at rural stations mainly due to the spatial resolution used in the simulations. For the investigated carbonaceous aerosol compounds, the differences between the concentrations simulated by different models are lower than the differences between the concentrations simulated with a model for different seasons. © 2019 The Authors