Search Results

Now showing 1 - 10 of 851
  • Item
    Proximity array device: a novel photon detector working in long wavelengths
    (Basel : MDPI AG, 2020) Rezvani, S. Javad; Di Gioacchino, Daniele; Gatti, Claudio; Ligi, Carlo; Guidi, Mariangela Cestelli; Cibella, Sara; Fretto, Matteo; Poccia, Nicola; Lupi, Stefano; Marcelli, Augusto
    We present here an innovative photon detector based on the proximity junction array device (PAD) working at long wavelengths. We show that the vortex dynamics in PAD undergoes a transition from a Mott insulator to a vortex metal state by application of an external magnetic field. The PAD also evidences a Josephson I-V characteristic with the external field dependent tunneling current. At high applied currents, we observe a dissipative regime in which the vortex dynamics is dominated by the quasi-particle contribution from the normal metal. The PAD has a relatively high photo-response even at frequencies below the expected characteristic frequency while, its superconducting properties such as the order parameter and the Josephson characteristic frequency can be modulated via external fields to widen the detection band. This device represents a promising and reliable candidate for new high-sensitivity long-wavelength detectors. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Phononic-magnetic dichotomy of the thermal Hall effect in the Kitaev material Na2 Co2 TeO6
    (College Park, MD : APS, 2023) Gillig, Matthias; Hong, Xiaochen; Wellm, Christoph; Kataev, Vladislav; Yao, Weiliang; Li, Yuan; Büchner, Bernd; Hess, Christian
    The quest for a half-quantized thermal Hall effect of a Kitaev system represents an important tool to probe topological edge currents of emergent Majorana fermions. Pertinent experimental findings for α-RuCl3 are, however, strongly debated, and it has been argued that the thermal Hall signal stems from phonons or magnons rather than from Majorana fermions. Here, we investigate the thermal Hall effect of the Kitaev candidate material Na2Co2TeO6, and we show that the measured signal emerges from at least two components, phonons and magnetic excitations. This dichotomy results from our discovery that the longitudinal and transversal heat conductivities share clear phononic signatures, while the transversal signal changes sign upon entering the low-temperature, magnetically ordered phase. Our results demonstrate that uncovering a genuinely quantized magnetic thermal Hall effect in Kitaev topological quantum spin liquids such as α-RuCl3 and Na2Co2TeO6 requires disentangling phonon vs magnetic contributions, including potentially fractionalized excitations such as the expected Majorana fermions.
  • Item
    Optical, electrical and chemical properties of PEO:I2 complex composite films
    (Heidelberg [u.a.] : Springer, 2022) Telfah, Ahmad; Al-Bataineh, Qais M.; Tolstik, Elen; Ahmad, Ahmad A.; Alsaad, Ahmad M.; Ababneh, Riad; Tavares, Carlos J.; Hergenröder, Roland
    Synthesized PEO:I2 complex composite films with different I2 concentrations were deposited onto fused silica substrates using a dip-coating method. Incorporation of PEO films with I2 increases the electrical conductivity of the composite, reaching a maximum of 46 mS/cm for 7 wt% I2. The optical and optoelectronic properties of the complex composite films were studied using the transmittance and reflectance spectra in the UV-Vis region. The transmittance of PEO decreases with increasing I2 content. From this study, the optical bandgap energy decreases from 4.42 to 3.28 eV as I2 content increases from 0 to 7 wt%. In addition, the refractive index for PEO films are in the range of 1.66 and 2.00.1H NMR spectra of pure PEO film shows two major peaks at 3.224 ppm and 1.038 ppm, with different widths assigned to the mobile polymer chains in the amorphous phase, whereas the broad component is assigned to the more rigid molecules in the crystalline phase, respectively. By adding I2 to the PEO, both peaks (amorphous and crystal) are shifted to lower NMR frequencies indicating that I2 is acting as a Lewis acid, and PEO is acting as Lewis base. Hence, molecular iodine reacts favorably with PEO molecules through a charge transfer mechanism, and the formation of triiodide (I3-), the iodite (IO2-) anion, I 2· · · PEO and I2+···PEO complexes. PEO:I2 complex composite films are expected to be suitable for optical, electrical, and optoelectronic applications.
  • Item
    Path integral solutions for n-dimensional stochastic differential equations under α-stable Lévy excitation
    (College Park, Md : [Verlag nicht ermittelbar], 2023) Zan, Wanrong; Xu, Yong; Kurths, Jürgen
    In this paper, the path integral solutions for a general n-dimensional stochastic differential equations (SDEs) with α-stable Lévy noise are derived and verified. Firstly, the governing equations for the solutions of n-dimensional SDEs under the excitation of α-stable Lévy noise are obtained through the characteristic function of stochastic processes. Then, the short-time transition probability density function of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski (CKS) equation and the characteristic function, and its correctness is demonstrated by proving that it satisfies the governing equation of the solution of the SDE, which is also called the Fokker-Planck-Kolmogorov equation. Besides, illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method, and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.
  • Item
    Inactivation of airborne bacteria by plasma treatment and ionic wind for indoor air cleaning
    (Hoboken, NJ : Wiley Interscience, 2020) Prehn, Franziska; Timmermann, Eric; Kettlitz, Manfred; Schaufler, Katharina; Günther, Sebastian; Hahn, Veronika
    Airborne bacteria are a general problem in medical or health care facilities with a high risk for nosocomial infections. Rooms with a continuous airflow, such as operation theaters, are of particular importance due to a possible dissemination and circulation of pathogens including multidrug-resistant microorganisms. In this regard, a cold atmospheric-pressure plasma (CAP) may be a possibility to support usual disinfection procedures due to its decontaminating properties. The aim of this study was to determine the antimicrobial efficacy of a plasma decontamination module that included a dielectric barrier discharge for plasma generation. Experimental parameters such as an airflow velocity of 4.5 m/s and microbial contaminations of approximately 6,000 colony-forming units (cfu)/m3 were used to simulate practical conditions of a ventilation system in an operating theater. The apathogenic microorganism Escherichia coli K12 DSM 11250/NCTC 10538 and the multidrug-resistant strains E. coli 21181 and 21182 (isolated from patients) were tested to determine the antimicrobial efficacy. In summary, the number of cfu was reduced by 31–89% for the tested E. coli strains, whereby E. coli K12 was the most susceptible strain toward inactivation by the designed plasma module. A possible correlation between the number or kind of resistances and susceptibility against plasma was discussed. The inactivation of microorganisms was affected by plasma intensity and size of the plasma treatment area. In addition, the differences of the antimicrobial efficacies caused through the nebulization of microorganisms in front (upstream) or behind (downstream) the plasma source were compared. The presence of ionic wind had no influence on the reduction of the number of cfu for E. coli K12, as the airflow velocity was too high for a successful precipitation, which would be a prerequisite for an increased antimicrobial efficacy. The inactivation of the tested microorganisms confirms the potential of CAP for the improvement of air quality. The scale-up of this model system may provide a novel tool for an effective air cleaning process.
  • Item
    Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies
    (Bristol : IOP Publ., 2020) Gazibegović-Busuladžić, A.; Busuladžić, M.; Čerkić, A.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Understanding the transgression of global and regional freshwater planetary boundaries
    (London : Royal Society, 2022) Pastor, A.V.; Biemans, H.; Franssen, W.; Gerten, D.; Hoff, H.; Ludwig, F.; Kabat, P.
    Freshwater ecosystems have been degraded due to intensive freshwater abstraction. Therefore, environmental flow requirements (EFRs) methods have been proposed to maintain healthy rivers and/or restore river flows. In this study, we used the Variable Monthly Flow (VMF) method to calculate the transgression of freshwater planetary boundaries: (1) natural deficits in which flow does not meet EFRs due to climate variability, and (2) anthropogenic deficits caused by water abstractions. The novelty is that we calculated spatially and cumulative monthly water deficits by river types including the frequency, magnitude and causes of environmental flow (EF) deficits (climatic and/or anthropogenic). Water deficit was found to be a regional rather than a global concern (less than 5% of total discharge). The results show that, from 1960 to 2000, perennial rivers with low flow alteration, such as the Amazon, had an EF deficit of 2–12% of the total discharge, and that the climate deficit was responsible for up to 75% of the total deficit. In rivers with high seasonality and high water abstractions such as the Indus, the total deficit represents up to 130% of its total discharge, 85% of which is due to withdrawals. We highlight the need to allocate water to humans and ecosystems sustainably. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’.
  • Item
    An engineered coccolith-based hybrid that transforms light into swarming motion
    (Maryland Heights, MO : Cell Press, 2021) Lomora, Mihai; Larrañaga, Aitor; Rodriguez-Emmenegger, Cesar; Rodriguez, Brian; Dinu, Ionel Adrian; Sarasua, Jose-Ramon; Pandit, Abhay
    Translating energy into swarming motion for miniature entities remains a challenge. This translation requires simultaneously breaking the symmetry of the system to enable locomotion and a coupling effect between the objects that are part of the population to induce the collective motion. Here, we report on Robocoliths, engineered Emiliania huxleyi (EHUX) coccolith-based miniature hybrid entities capable of swarming behavior. EHUX coccoliths are characterized by an asymmetric morphology that allows breaking symmetry, playing a central role in generating a net force and directed motion. Their activation with the bioinspired material polydopamine not only endows the asymmetric coccoliths with advanced functionalities, such as thermal- and energy-harvesting responsiveness under visible light exposure to display a collective behavior (i.e., swarming), but it also provides a functional surface from which antifouling polymer brushes are grown. In this context, Robocoliths pave the way for the next generation of multifunctional swarming bio-micromachines. © 2021 The Author(s)Establishment of controlled nano- and mesoscopic energized entities that gather, in a concerted effort, into motile aggregated patterns is at the forefront of scientific discovery. Lomora et al. report on coccolith-polydopamine hybrids (Robocoliths) that heat and move collectively upon light excitation and accommodate antifouling brushes on their surface. © 2021 The Author(s)
  • Item
    Target ion and neutral spread in high power impulse magnetron sputtering
    (New York, NY : Inst., 2022) Hajihoseini, H.; Brenning, N.; Rudolph, M.; Raadu, M.A.; Lundin, D.; Fischer, J.; Minea, T. M.; Gudmundsson, J.T.
    In magnetron sputtering, only a fraction of the sputtered target material leaving the ionization region is directed toward the substrate. This fraction may be different for ions and neutrals of the target material as the neutrals and ions can exhibit a different spread as they travel from the target surface toward the substrate. This difference can be significant in high power impulse magnetron sputtering (HiPIMS) where a substantial fraction of the sputtered material is known to be ionized. Geometrical factors or transport parameters that account for the loss of produced film-forming species to the chamber walls are needed for experimental characterization and modeling of the magnetron sputtering discharge. Here, we experimentally determine transport parameters for ions and neutral atoms in a HiPIMS discharge with a titanium target for various magnet configurations. Transport parameters are determined to a typical substrate, with the same diameter (100 mm) as the cathode target, and located at a distance 70 mm from the target surface. As the magnet configuration and/or the discharge current are changed, the transport parameter for neutral atoms ζ tn remains roughly the same, while transport parameters for ions ζ ti vary greatly. Furthermore, the relative ion-to-neutral transport factors, ζ ti / ζ tn, that describe the relative deposited fractions of target material ions and neutrals onto the substrate, are determined to be in the range from 0.4 to 1.1.