Search Results

Now showing 1 - 10 of 66
  • Item
    Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer’s Lactate Solutions in a Model of Peritoneal Carcinomatosis
    (Basel : MDPI, 2022) Miebach, Lea; Freund, Eric; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer’s lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
  • Item
    Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields
    (Basel : MDPI, 2022) Wolff, Christina M.; Kolb, Juergen F.; Bekeschus, Sander
    In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
  • Item
    Influence of redox stress on crosstalk between fibroblasts and keratinocytes
    (Basel : MDPI, 2021) Bhartiya, Pradeep; Masur, Kai; Shome, Debarati; Kaushik, Neha; Nguyen, Linh N.; Kaushik, Nagendra Kumar; Choi, Eun Ha
    Although the skin is constantly subjected to endogenous and exogenous stress, it maintains a homeostatic state through wound repair and regeneration pathways. Treatment for skin diseases and injury requires a significant understanding of the various mechanisms and interactions that occur within skin cells. Keratinocytes and fibroblasts interact with each other and act as key players in the repair process. Although fibroblasts and keratinocytes are widely studied in wound healing and skin remodeling under different conditions, the influence of redox stress on keratinocyte-fibroblast crosstalk has not been thoroughly investigated. In this study, we used cold atmospheric plasma (CAP) to generate and deliver oxidative stress to keratinocytes and fibroblasts and to assess its impact on their interactions. To this end, we used a well-established in vitro 3D co-culture model imitating a realistic scenario. Our study shows that low CAP exposure is biocompatible and does not affect the viability or energetics of fibroblasts and keratinocytes. Exposure to low doses of CAP enhanced the proliferation rate of cells and stimulated the expression of key genes (KGF, MMP2, GMCSF, IL-6, and IL-8) in fibroblasts, indicating the activation and initiation of the skin repair process. Additionally, enhanced migration was observed under co-culture conditions under the given redox stress conditions, and expression of the upstream regulator and the effectors of the Hippo pathway (YAP and CYR61, respectively), which are associated with enhanced migration, were elevated. Overall, this study reinforces the application of CAP and redox stress in skin repair physiology.
  • Item
    Pancreatic Cancer Cells Undergo Immunogenic Cell Death upon Exposure to Gas Plasma-Oxidized Ringers Lactate
    (Basel : MDPI, 2023) Miebach, Lea; Mohamed, Hager; Wende, Kristian; Miller, Vandana; Bekeschus, Sander
    Survival rates among patients with pancreatic cancer, the most lethal gastrointestinal cancer, have not improved compared to other malignancies. Early tumor dissemination and a supportive, cancer-promoting tumor microenvironment (TME) limit therapeutic options and consequently impede tumor remission, outlining an acute need for effective treatments. Gas plasma-oxidized liquid treatment showed promising preclinical results in other gastrointestinal and gynecological tumors by targeting the tumor redox state. Here, carrier solutions are enriched with reactive oxygen (ROS) and nitrogen (RNS) species that can cause oxidative distress in tumor cells, leading to a broad range of anti-tumor effects. Unfortunately, clinical relevance is often limited, as many studies have forgone the use of medical-grade solutions. This study investigated the efficacy of gas plasma-oxidized Ringer’s lactate (oxRilac), a physiological solution often used in clinical practice, on two pancreatic cancer cell lines to induce tumor toxicity and provoke immunogenicity. Tumor toxicity of the oxRilac solutions was further confirmed in three-dimensional tumor spheroids monitored over 72 h and in ovo using stereomicroscope imaging of excised GFP-expressing tumors. We demonstrated that cell death signaling was induced in a dose-dependent fashion in both cell lines and was paralleled by the increased surface expression of key markers of immunogenic cell death (ICD). Nuclear magnetic resonance (NMR) spectroscopy analysis suggested putative reaction pathways that may cause the non-ROS related effects. In summary, our study suggests gas plasma-deposited ROS in clinically relevant liquids as an additive option for treating pancreatic cancers via immune-stimulating and cytotoxic effects.
  • Item
    Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells
    (Basel : MDPI, 2021) Khabipov, Aydar; Freund, Eric; Liedtke, Kim Rouven; Käding, Andre; Riese, Janik; van der Linde, Julia; Kersting, Stephan; Partecke, Lars-Ivo; Bekeschus, Sander
    Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
  • Item
    Therapeutic ROS and Immunity in Cancer-The TRIC-21 Meeting
    (Basel : MDPI, 2021) Bekeschus, Sander; Emmert, Steffen; Clemen, Ramona; Boeckmann, Lars
    The first Therapeutic ROS and Immunity in Cancer (TRIC) meeting was organized by the excellence research center ZIK plasmatis (with its previous Frontiers in Redox Biochemistry and Medicine (FiRBaM) and Young Professionals' Workshop in Plasma Medicine (YPWPM) workshop series in Northern Germany) and the excellence research program ONKOTHER-H (Rostock/Greifswald, Germany). The meeting showcased cutting-edge research and liberated discussions on the application of therapeutic ROS and immunology in cancer treatment, primarily focusing on gas plasma technology. The 2-day hybrid meeting took place in Greifswald and online from 15-16 July 2021, facilitating a wide range of participants totaling 66 scientists from 12 countries and 5 continents. The meeting aimed at bringing together researchers from a variety of disciplines, including chemists, biochemists, biologists, engineers, immunologists, physicists, and physicians for interdisciplinary discussions on using therapeutic ROS and medical gas plasma technology in cancer therapy with the four main sessions: "Plasma, Cancer, Immunity", "Plasma combination therapies", "Plasma risk assessment and patients studies", and "Plasma mechanisms and treated liquids in cancer". This conference report outlines the abstracts of attending scientists submitted to this meeting.
  • Item
    Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models
    (Basel : MDPI, 2023) Troschke-Meurer, Sascha; Zumpe, Maxi; Meißner, Lena; Siebert, Nikolai; Grabarczyk, Piotr; Forkel, Hannes; Maletzki, Claudia; Bekeschus, Sander; Lode, Holger N.
    Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
  • Item
    Functional thin films synthesized from liquid precursors by combining mist chambers and atmospheric-pressure plasma polymerization
    (Basel : MDPI, 2021) Barillas, Laura; Makhneva, Ekaterina; An, Sehoon; Fricke, Katja
    For the creation of thin films, the use of precursors in liquid phase offers a viable alternative when these chemicals are sensitive to high temperatures and phase changes. However, it requires appropriate liquid handling and deposition technologies capable of dispensing the fluid homogeneously to produce a uniform thin film. We report different tailor-made mist chamber designs integrated in an atmospheric-pressure plasma polymerization process for the synthesis of functional thin polymer films from liquid precursors. A systematic investigation, evaluated by performance indicators, is presented on the characteristics and suitability of metallic 3D-printed mist chambers depending on inner volume, geometry and surface post-treatment, for the deposition of a thin liquid monomer film. To assess the quality of the subsequently obtained plasma-polymerized (pp) films, their properties were characterized in terms of thickness, chemical composition, surface morphology and stability in aqueous environment. It was found that the specification of the mist chambers along with the plasma process parameters influences the pp film’s thickness, surface morphology and degree of monomer conversion. This study is one of the first demonstrations of a controllable process able to tune the cross-linked polymeric chains of plasma-polymers at atmospheric pressure, highlighting the opportunities of using mist chambers and plasma technology to discover tailored organic thin films to materials sciences and life sciences.
  • Item
    Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells
    (Basel : MDPI, 2022) Clemen, Ramona; Arlt, Kevin; Miebach, Lea; von Woedtke, Thomas; Bekeschus, Sander
    In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.
  • Item
    Modulation of the Tumor-Associated Immuno-Environment by Non-Invasive Physical Plasma
    (Basel : MDPI, 2023) Förster, Sarah; Niu, Yuequn; Eggers, Benedikt; Nokhbehsaim, Marjan; Kramer, Franz-Josef; Bekeschus, Sander; Mustea, Alexander; Stope, Matthias B.
    Over the past 15 years, investigating the efficacy of non-invasive physical plasma (NIPP) in cancer treatment as a safe oxidative stress inducer has become an active area of research. So far, most studies focused on the NIPP-induced apoptotic death of tumor cells. However, whether NIPP plays a role in the anti-tumor immune responses need to be deciphered in detail. In this review, we summarized the current knowledge of the potential effects of NIPP on immune cells, tumor–immune interactions, and the immunosuppressive tumor microenvironment. In general, relying on their inherent anti-oxidative defense systems, immune cells show a more resistant character than cancer cells in the NIPP-induced apoptosis, which is an important reason why NIPP is considered promising in cancer management. Moreover, NIPP treatment induces immunogenic cell death of cancer cells, leading to maturation of dendritic cells and activation of cytotoxic CD8+ T cells to further eliminate the cancer cells. Some studies also suggest that NIPP treatment may promote anti-tumor immune responses via other mechanisms such as inhibiting tumor angiogenesis and the desmoplasia of tumor stroma. Though more evidence is required, we expect a bright future for applying NIPP in clinical cancer management.