Search Results

Now showing 1 - 2 of 2
  • Item
    Anisotropic photoemission time delays close to a Fano resonance
    ([London] : Nature Publishing Group UK, 2018) Cirelli, Claudio; Marante, Carlos; Heuser, Sebastian; Petersson, C.L.M.; Galán, Álvaro Jiménez; Argenti, Luca; Zhong, Shiyang; Busto, David; Isinger, Marcus; Nandi, Saikat; Maclot, Sylvain; Rading, Linnea; Johnsson, Per; Gisselbrecht, Mathieu; Lucchini, Matteo; Gallmann, Lukas; Dahlström, J. Marcus; Lindroth, Eva; L’Huillier, Anne; Martín, Fernando; Keller, Ursula
    Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20-40 eV spectral range, in the vicinity of the 3s -1 np autoionizing resonances. We present measurements of the differential photoionization cross section and extract energy and angle-dependent atomic time delays with an attosecond interferometric method. With the support of a theoretical model, we are able to attribute a large part of the measured time delay anisotropy to the presence of autoionizing resonances, which not only distort the phase of the emitted photoelectron wave packet but also introduce an angular dependence.
  • Item
    Attosecond time-resolved photoelectron holography
    ([London] : Nature Publishing Group UK, 2018) Porat, G.; Alon, G.; Rozen, S.; Pedatzur, O.; Krüger, M.; Azoury, D.; Natan, A.; Orenstein, G.; Bruner, B.D.; Vrakking, M. J.J.; Dudovich, N.
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography - all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds.