Search Results

Now showing 1 - 10 of 34
Loading...
Thumbnail Image
Item

Quantum diffusion

2015, Knowles, Antti

If you place a drop of ink into a glass of water, the ink will slowly dissipate into the surrounding water until it is perfectly mixed. If you record your experiment with a camera and play the film backwards, you will see something that is never observed in the real world. Such diffusive and irreversible behaviour is ubiquitous in nature. Nevertheless, the fundamental equations that describe the motion of individual particles – Newton’s and Schrödinger’s equations – are reversible in time: a film depicting the motion of just a few particles looks as realistic when played forwards as when played backwards. In this snapshot, we discuss how one may try to understand the origin of diffusion starting from the fundamental laws of quantum mechanics.

Loading...
Thumbnail Image
Item

Operator theory and the singular value decomposition

2014, Knese, Greg

This is a snapshot about operator theory and one of its fundamental tools: the singular value decomposition (SVD). The SVD breaks up linear transformations into simpler mappings, thus unveiling their geometric properties. This tool has become important in many areas of applied mathematics for its ability to organize information. We discuss the SVD in the concrete situation of linear transformations of the plane (such as rotations, reflections, etc.).

Loading...
Thumbnail Image
Item

Touching the transcendentals: tractional motion from the bir th of calculus to future perspectives

2019, Milici, Pietro

When the rigorous foundation of calculus was developed, it marked an epochal change in the approach of mathematicians to geometry. Tools from geometry had been one of the foundations of mathematics until the 17th century but today, mainstream conception relegates geometry to be merely a tool of visualization. In this snapshot, however, we consider geometric and constructive components of calculus. We reinterpret “tractional motion”, a late 17th century method to draw transcendental curves, in order to reintroduce “ideal machines” in math foundation for a constructive approach to calculus that avoids the concept of infinity.

Loading...
Thumbnail Image
Item

On Logic, Choices and Games

2019, Oliva, Paulo

Can we always mathematically formalise our taste and preferences? We discuss how this has been done historically in the field of game theory, and how recent ideas from logic and computer science have brought an interesting twist to this beautiful theory.

Loading...
Thumbnail Image
Item

Towards a Mathematical Theory of Turbulence in Fluids

2016, Bedrossian, Jacob

Fluid mechanics is the theory of how liquids and gases move around. For the most part, the basic physics are well understood and the mathematical models look relatively simple. Despite this, fluids display a dazzling mystery to their motion. The random-looking, chaotic behavior of fluids is known as turbulence, and it lies far beyond our mathematical understanding, despite a century of intense research.

Loading...
Thumbnail Image
Item

Determinacy versus indeterminacy

2020, Berg, Christian

Can a continuous function on an interval be uniquely determined if we know all the integrals of the function against the natural powers of the variable? Following Weierstrass and Stieltjes, we show that the answer is yes if the interval is finite, and no if the interval is infinite.

Loading...
Thumbnail Image
Item

News on quadratic polynomials

2017, Pottmeyer, Lukas

Many problems in mathematics have remained unsolved because of missing links between mathematical disciplines, such as algebra, geometry, analysis, or number theory. Here we introduce a recently discovered result concerning quadratic polynomials, which uses a bridge between algebra and analysis. We study the iterations of quadratic polynomials, obtained by computing the value of a polynomial for a given number and feeding the outcome into the exact same polynomial again. These iterations of polynomials have interesting applications, such as in fractal theory.

Loading...
Thumbnail Image
Item

Quantum symmetry

2020, Caspers, Martijn

The symmetry of objects plays a crucial role in many branches of mathematics and physics. It allowed, for example, the early prediction of the existence of new small particles. “Quantum symmetry” concerns a generalized notion of symmetry. It is an abstract way of characterizing the symmetry of a much richer class of mathematical and physical objects. In this snapshot we explain how quantum symmetry emerges as matrix symmetries using a famous example: Mermin’s magic square. It shows that quantum symmetries can solve problems that lie beyond the reach of classical symmetries, showing that quantum symmetries play a central role in modern mathematics.

Loading...
Thumbnail Image
Item

Emergence in biology and social sciences

2022, Hoffmann, Franca, Merino-Aceituno, Sara

Mathematics is the key to linking scientific knowledge at different scales: from microscopic to macroscopic dynamics. This link gives us understanding on the emergence of observable patterns like flocking of birds, leaf venation, opinion dynamics, and network formation, to name a few. In this article, we explore how mathematics is able to traverse scales, and in particular its application in modelling collective motion of bacteria driven by chemical signalling.

Loading...
Thumbnail Image
Item

Expander graphs and where to find them

2019, Khukhro, Ana

Graphs are mathematical objects composed of a collection of “dots” called vertices, some of which are joined by lines called edges. Graphs are ideal for visually representing relations between things, and mathematical properties of graphs can provide an insight into real-life phenomena. One interesting property is how connected a graph is, in the sense of how easy it is to move between the vertices along the edges. The topic dealt with here is the construction of particularly well-connected graphs, and whether or not such graphs can happily exist in worlds similar to ours.