Search Results

Now showing 1 - 10 of 105
Loading...
Thumbnail Image
Item

Low-dimensional behavior of Kuramoto model with inertia in complex networks

2014, Ji, P., Peron, T.K.D.M., Rodrigues, F.A., Kurths, J.

Low-dimensional behavior of large systems of globally coupled oscillators has been intensively investigated since the introduction of the Ott-Antonsen ansatz. In this report, we generalize the Ott-Antonsen ansatz to second-order Kuramoto models in complex networks. With an additional inertia term, we find a low-dimensional behavior similar to the first-order Kuramoto model, derive a self-consistent equation and seek the time-dependent derivation of the order parameter. Numerical simulations are also conducted to verify our analytical results.

Loading...
Thumbnail Image
Item

Principal nonlinear dynamical modes of climate variability

2015, Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., Kurths, J.

Loading...
Thumbnail Image
Item

Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

2017, Papadopoulos, Lia, Kim, Jason Z., Kurths, Jürgen, Bassett, Danielle S.

Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule-which preserves connections between more outof- phase oscillators while rewiring connections between more in-phase oscillators-can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by considering a time-dependent interplay between structure and dynamics, this work offers a mechanism through which emergent phenomena and organization can arise in complex systems utilizing local rules.

Loading...
Thumbnail Image
Item

Special Issue “Trends in recurrence analysis of dynamical systems”

2023, Marwan, Norbert, Webber, Charles L., Rysak, Andrzej

[No abstract available]

Loading...
Thumbnail Image
Item

Networks from Flows - From Dynamics to Topology

2014, Molkenthin, N., Rehfeld, K., Marwan, N., Kurths, J.

Complex network approaches have recently been applied to continuous spatial dynamical systems, like climate, successfully uncovering the system's interaction structure. However the relationship between the underlying atmospheric or oceanic flow's dynamics and the estimated network measures have remained largely unclear. We bridge this crucial gap in a bottom-up approach and define a continuous analytical analogue of Pearson correlation networks for advection-diffusion dynamics on a background flow. Analysing complex networks of prototypical flows and from time series data of the equatorial Pacific, we find that our analytical model reproduces the most salient features of these networks and thus provides a general foundation of climate networks. The relationships we obtain between velocity field and network measures show that line-like structures of high betweenness mark transition zones in the flow rather than, as previously thought, the propagation of dynamical information.

Loading...
Thumbnail Image
Item

Photobiomodulation of lymphatic drainage and clearance: Perspective strategy for augmentation of meningeal lymphatic functions

2020, Semyachkina-Glushkovskaya, Oxana, Abdurashitov, Arkady, Dubrovsky, Alexander, Klimova, Maria, Agranovich, Ilana, Terskov, Andrey, Shirokov, Alexander, Vinnik, Valeria, Kuzmina, Anna, Lezhnev, Nikita, Blokhina, Inna, Shnitenkova, Anastassia, Tuchin, Valery, Rafailov, Edik, Kurths, Jurgen

There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm2) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs. We assume that PBM-mediated relaxation of the lymphatic vessels can be possible mechanisms underlying increasing the permeability of the lymphatic endothelium that allows molecules transported by the lymphatic vessels and explain PBM stimulation of lymphatic drainage and clearance. These findings open new strategies for the stimulation of MLVs functions and non-pharmacological therapy of brain diseases.

Loading...
Thumbnail Image
Item

Path integral solutions for n-dimensional stochastic differential equations under α-stable Lévy excitation

2023, Zan, Wanrong, Xu, Yong, Kurths, Jürgen

In this paper, the path integral solutions for a general n-dimensional stochastic differential equations (SDEs) with α-stable Lévy noise are derived and verified. Firstly, the governing equations for the solutions of n-dimensional SDEs under the excitation of α-stable Lévy noise are obtained through the characteristic function of stochastic processes. Then, the short-time transition probability density function of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski (CKS) equation and the characteristic function, and its correctness is demonstrated by proving that it satisfies the governing equation of the solution of the SDE, which is also called the Fokker-Planck-Kolmogorov equation. Besides, illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method, and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.

Loading...
Thumbnail Image
Item

A random interacting network model for complex networks

2015, Goswami, B., Shekatkar, S.M., Rheinwalt, A., Ambika, G., Kurths, J.

Loading...
Thumbnail Image
Item

Random-matrix theory for the Lindblad master equation

2021, Lange, Stefan, Timm, Carsten

Open quantum systems with Markovian dynamics can be described by the Lindblad equation. The quantity governing the dynamics is the Lindblad superoperator. We apply random-matrix theory to this superoperator to elucidate its spectral properties. The distribution of eigenvalues and the correlations of neighboring eigenvalues are obtained for the cases of purely unitary dynamics, pure dissipation, and the physically realistic combination of unitary and dissipative dynamics. © 2021 Author(s).

Loading...
Thumbnail Image
Item

Sample-based approach can outperform the classical dynamical analysis - Experimental confirmation of the basin stability method

2017, Brzeski, P., Wojewoda, J., Kapitaniak, T., Kurths, J., Perlikowski, P.

In this paper we show the first broad experimental confirmation of the basin stability approach. The basin stability is one of the sample-based approach methods for analysis of the complex, multidimensional dynamical systems. We show that investigated method is a reliable tool for the analysis of dynamical systems and we prove that it has a significant advantages which make it appropriate for many applications in which classical analysis methods are difficult to apply. We study theoretically and experimentally the dynamics of a forced double pendulum. We examine the ranges of stability for nine different solutions of the system in a two parameter space, namely the amplitude and the frequency of excitation. We apply the path-following and the extended basin stability methods (Brzeski et al., Meccanica 51(11), 2016) and we verify obtained theoretical results in experimental investigations. Comparison of the presented results show that the sample-based approach offers comparable precision to the classical method of analysis. However, it is much simpler to apply and can be used despite the type of dynamical system and its dimensions. Moreover, the sample-based approach has some unique advantages and can be applied without the precise knowledge of parameter values.