Search Results

Now showing 1 - 10 of 19
  • Item
    Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications
    (Bristol : IOP Publishing, 2020-12-4) Utech, Toni; Pötschke, Petra; Simon, Frank; Janke, Andreas; Kettner, Hannes; Paiva, Maria; Zimmerer, Cordelia
    Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
  • Item
    Nonlinear dynamical properties of frequency swept fiber-based semiconductor lasers
    (Bristol : IOP Publishing, 2021) Slepneva, Svetlana; Pimenov, Alexander
    We investigate dynamics of semiconductor lasers with fiber-based unidirectional ring cavity that can be used as frequency swept sources. We identify key factors behind the reach dynamical behavior of such lasers using state-of-the-art experimental and analytical methods. Experimentally, we study the laser in static, quasi-static and synchronization regimes. We apply experimental methods such as optical heterodyne or electric field reconstruction in order to characterize these regimes or study the mechanisms of transition between them. Using a delay differential equation model, we demonstrate that the presence of chromatic dispersion can lead to destabilization of the laser modes through modulational instability, which results in undesirable chaotic emission. We characterize the instability threshold both theoretically and experimentally, and demonstrate deterioration of the Fourier domain mode locking regime near the threshold.
  • Item
    Force microscopy of layering and friction in an ionic liquid
    (Bristol : IOP Publishing, 2014) Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip–sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
  • Item
    The 2018 correlative microscopy techniques roadmap
    (Bristol : IOP Publishing, 2018) Ando, Toshio; Bhamidimarri, Satya Prathyusha; Brending, Niklas; Colin-York, H; Collinson, Lucy; De Jonge, Niels; de Pablo, P J; Debroye, Elke; Eggeling, Christian; Franck, Christian; Fritzsche, Marco; Gerritsen, Hans; Giepmans, Ben N G; Grunewald, Kay; Hofkens, Johan; Hoogenboom, Jacob P; Janssen, Kris P F; Kaufmann, Rainer; Klumpermann, Judith; Kurniawan, Nyoman; Kusch, Jana; Liv, Nalan; Parekh, Viha; Peckys, Diana B; Rehfeldt, Florian; Reutens, David C; Roeffaers, Maarten B J; Salditt, Tim; Schaap, Iwan A T; Schwarz, Ulrich S; Verkade, Paul; Vogel, Michael W; Wagner, Richard; Winterhalter, Mathias; Yuan, Haifeng; Zifarelli, Giovanni
    Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
  • Item
    How to grow single-crystalline and epitaxial NiTi films in (100)- and (111)-orientation
    (Bristol : IOP Publishing, 2023) Lünser, Klara; Undisz, Andreas; Nielsch, Kornelius; Fähler, Sebastian
    Understanding the martensitic microstructure in nickel-titanium (NiTi) thin films helps to optimize their properties for applications in microsystems. Epitaxial and single-crystalline films can serve as model systems to understand the microstructure, as well as to exploit the anisotropic mechanical properties of NiTi. Here, we analyze the growth of NiTi on single-crystalline MgO(100) and Al2O3(0001) substrates and optimize film and buffer deposition conditions to achieve epitaxial films in (100)- and (111)-orientation. On MgO(100), we compare the transformation behavior and crystal quality of (100)-oriented NiTi films on different buffer layers. We demonstrate that a vanadium buffer layer helps to decrease the low-angle grain boundary density in the NiTi film, which inhibits undesired growth twins and leads to higher transformation temperatures. On Al2O3(0001), we analyze the orientation of a chromium buffer layer and find that it grows (111)-oriented only in a narrow temperature range around 500 ∘C. By depositing the Cr buffer below the NiTi film, we can prepare (111)-oriented, epitaxial films with transformation temperatures above room temperature. Transmission electron microscopy confirms a martensitic microstructure with Guinier Preston-zone precipitates at room temperature. We identify the deposition conditions to approach the ideal single crystalline state, which is beneficial for the analysis of the martensitic microstructure and anisotropic mechanical properties in different film orientations.
  • Item
    MXenes and the progress of Li–S battery development - a perspective
    (Bristol : IOP Publishing, 2021) Balach, Juan; Giebeler, Lars
    Lithium–sulfur (Li–S) battery has attracted tremendous interest owing to its high energy density at affordable costs. However, the irreversible active material loss and subsequent capacity fading caused by the uncontrollable shuttling of polysulfides have greatly hampered its commercial viability. MXenes, a novel class of 2D materials derived from nano-layered MAX phases, have been shown the potential to push the development of sulfur-based batteries to a next level owing to their high conductivity, strong polysulfide affinity and electrocatalytic properties. This perspective article focuses on the possible implications that MXene-based materials will have in the development of advanced sulfur-based batteries and their potential application in different upcoming technologies. In four sections possible developments are outlined which can be reached in the next 10 years, that enable a highly reliable, minimized Li–S battery finally combined with energy harvesters to fabricate autonomous power supplies for the next generation of microscaled devices like meteorological or geotechnical probes, wearable (medical) sensors or other suitable mobile devices. Finally, a flowchart illustrates the possible way to realize some important milestones for the certain possible steps with significant contributions of MXenes.
  • Item
    Roadmap on commercialization of metal halide perovskite photovoltaics
    (Bristol : IOP Publishing, 2023) Feng, Shien-Ping; Cheng, Yuanhang; Yip, Hin-Lap; Zhong, Yufei; Fong, Patrick W. K.; Li, Gang; Ng, Annie; Chen, Cong; Castriotta, Luigi Angelo; Matteocci, Fabio; Vesce, Luigi; Saranin, Danila; Carlo, Aldo Di; Wang, Puqun; Wei Ho, Jian; Hou, Yi; Lin, Fen; Aberle, Armin G; Song, Zhaoning; Yan, Yanfa; Chen, Xu; Yang, Yang (Michael); Syed, Ali Asgher; Ahmad, Ishaq; Leung, Tiklun; Wang, Yantao; Lin, JingYang; Ng, Alan Man Ching; Li, Yin; Ebadi, Firouzeh; Tress, Wolfgang; Richardson, Giles; Ge, Chuangye; Hu, Hanlin; Karimipour, Masoud; Baumann, Fanny; Tabah, Kenedy; Pereyra, Carlos; Raga, Sonia R.; Xie, Haibing; Lira-Cantu, Monica; Khenkin, Mark V.; Visoly-Fisher, Iris; Katz, Eugene A.; Vaynzof, Yana; Vidal, Rosario; Yu, Guicheng; Lin, Haoran; Weng, Shuchen; Wang, Shifeng; Djurišić, Aleksandra B.
    Perovskite solar cells (PSCs) represent one of the most promising emerging photovoltaic technologies due to their high power conversion efficiency. However, despite the huge progress made not only in terms of the efficiency achieved, but also fundamental understanding of the relevant physics of the devices and issues which affect their efficiency and stability, there are still unresolved problems and obstacles on the path toward commercialization of this promising technology. In this roadmap, we aim to provide a concise and up to date summary of outstanding issues and challenges, and the progress made toward addressing these issues. While the format of this article is not meant to be a comprehensive review of the topic, it provides a collection of the viewpoints of the experts in the field, which covers a broad range of topics related to PSC commercialization, including those relevant for manufacturing (scaling up, different types of devices), operation and stability (various factors), and environmental issues (in particular the use of lead). We hope that the article will provide a useful resource for researchers in the field and that it will facilitate discussions and move forward toward addressing the outstanding challenges in this fast-developing field.
  • Item
    Improved Capacitive Deionization Performance of Mixed Hydrophobic / Hydrophilic Activated Carbon Electrodes
    (Bristol : IOP Publishing, 2016) Aslan, Mesut; Zeiger, Marco; Jäckel, Nicolas; Grobelsek, Ingrid; Weingarth, Daniel; Presser, Volker
    Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limit the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2 activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm3/g and 2113 m2/g, this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to still capitalize the improved pore structure by admixing as received (more hydrophilic) carbon with CO2 treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates in an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg/g SAC for an optimized 2:1 mixture (by mass).
  • Item
    Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors
    (Bristol : IOP Publishing, 2019) George, Antony; Neumann, Christof; Kaiser, David; Mupparapu, Rajeshkumar; Lehnert, Tibor; Hübner, Uwe; Tang, Zian; Winter, Andreas; Kaiser, Ute; Staude, Isabelle; Turchanin, Andrey
    Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.
  • Item
    Impact of atomic defects in the electronic states of FeSe1-x Sx superconducting crystals
    (Bristol : IOP Publishing, 2022) Aragón Sánchez, Jazmín; Amigó, María Lourdes; Belussi, Cristian Horacio; Ale Crivillero, María Victoria; Suárez, Sergio; Guimpel, Julio; Nieva, Gladys; Gayone, Julio Esteban; Fasano, Yanina
    The electronic properties of Fe-based superconductors are drastically affected by deformations on their crystal structure introduced by doping and pressure. Here we study single crystals of FeSe 1 − x Sx and reveal that local crystal deformations such as atomic-scale defects impact the spectral shape of the electronic core level states of the material. By means of scanning tunneling microscopy we image S-doping induced defects as well as diluted dumbbell defects associated with Fe vacancies. We have access to the electronic structure of the samples by means of x-ray photoemission spectroscopy (XPS) and show that the spectral shape of the Se core levels can only be adequately described by considering a principal plus a minor component of the electronic states. We find this result for both pure and S-doped samples, irrespective that in the latter case the material presents extra crystal defects associated to doping with S atoms. We argue that the second component in our XPS spectra is associated with the ubiquitous dumbbell defects in FeSe that are known to entail a significant modification of the electronic clouds of surrounding atoms.