Search Results

Now showing 1 - 10 of 10
  • Item
    The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996-2010
    (Les Ulis : EDP Sciences, 2013) Vainio, R.; Valtonen, E.; Heber, B.; Malandraki, O.E.; Papaioannou, A.; Klein, K.-L.; Afanasiev, A.; Agueda, N.; Aurass, H.; Battarbee, M.; Braune, S.; Dröge, W.; Ganse, U.; Hamadache, C.; Heynderickx, D.; Huttunen-Heikinmaa, K.; Kiener, J.; Kilian, P.; Kopp, A.; Kouloumvakos, A.; Maisala, S.; Mishev, A.; Miteva, R.; Nindos, A.; Oittinen, T.; Raukunen, O.; Riihonen, E.; Rodríguez-Gasén, R.; Saloniemi, O.; Sanahuja, B.; Scherer, R.; Spanier, F.; Tatischeff, V.; Tziotziou, K.; Usoskin, I.G.; Vilmer, N.
    SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s a 2 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line.
  • Item
    The PAC2MAN mission: A new tool to understand and predict solar energetic events
    (Les Ulis : EDP Sciences, 2015) Amaya, Jorge; Musset, Sophie; Andersson, Viktor; Diercke, Andrea; Höller, Christian; Iliev, Sergiu; Juhász, Lilla; Kiefer, René; Lasagni, Riccardo; Lejosne, Solène; Madi, Mohammad; Rummelhagen, Mirko; Scheucher, Markus; Sorba, Arianna; Thonhofer, Stefan
    An accurate forecast of flare and coronal mass ejection (CME) initiation requires precise measurements of the magnetic energy buildup and release in the active regions of the solar atmosphere. We designed a new space weather mission that performs such measurements using new optical instruments based on the Hanle and Zeeman effects. The mission consists of two satellites, one orbiting the L1 Lagrangian point (Spacecraft Earth, SCE) and the second in heliocentric orbit at 1AU trailing the Earth by 80° (Spacecraft 80, SC80). Optical instruments measure the vector magnetic field in multiple layers of the solar atmosphere. The orbits of the spacecraft allow for a continuous imaging of nearly 73% of the total solar surface. In-situ plasma instruments detect solar wind conditions at 1AU and ahead of our planet. Earth-directed CMEs can be tracked using the stereoscopic view of the spacecraft and the strategic placement of the SC80 satellite. Forecasting of geoeffective space weather events is possible thanks to an accurate surveillance of the magnetic energy buildup in the Sun, an optical tracking through the interplanetary space, and in-situ measurements of the near-Earth environment.
  • Item
    A multi-model approach to X-ray pulsars: Connecting spectral and timing models to pin down the intrinsic emission characteristics of magnetized, accreting neutron stars
    (Les Ulis : EDP Sciences, 2014) Schönherr, G.; Schwarm, F.; Falkner, S.; Becker, P.; Wilms, J.; Dauser, T.; Wolff, M.T.; Wolfram, K.; West, B.; Pottschmidt, K.; Kretschmar, P.; Ferrigno, C.; Klochkov, D.; Nishimura, O.; Kreykenbohm, I.; Caballero, I.; Staubert, R.
    The emission characteristics of X-ray pulsars are governed by magnetospheric accretion within the Alfvén radius, leading to a direct coupling of accretion column properties and interactions at the magnetosphere. The complexity of the physical processes governing the formation of radiation within the accreted, strongly magnetized plasma has led to several sophisticated theoretical modelling efforts over the last decade, dedicated to either the formation of the broad band continuum, the formation of cyclotron resonance scattering features (CRSFs) or the formation of pulse profiles. While these individual approaches are powerful in themselves, they quickly reach their limits when aiming at a quantitative comparison to observational data. Too many fundamental parameters, describing the formation of the accretion columns and the systems' overall geometry are unconstrained and different models are often based on different fundamental assumptions, while everything is intertwined in the observed, highly phase-dependent spectra and energy-dependent pulse profiles. To name just one example: the (phase variable) line width of the CRSFs is highly dependent on the plasma temperature, the existence of B-field gradients (geometry) and observation angle, parameters which, in turn, drive the continuum radiation and are driven by the overall two-pole geometry for the light bending model respectively. This renders a parallel assessment of all available spectral and timing information by a compatible across-models-approach indispensable. In a collaboration of theoreticians and observers, we have been working on a model unification project over the last years, bringing together theoretical calculations of the Comptonized continuum, Monte Carlo simulations and Radiation Transfer calculations of CRSFs as well as a General Relativity (GR) light bending model for ray tracing of the incident emission pattern from both magnetic poles. The ultimate goal is to implement a unified fitting model for phase-resolved spectral and timing data analysis. We present the current status of this project.
  • Item
    Hot moons and cool stars
    (Les Ulis : EDP Sciences, 2013) Heller, R.; Barnes, R.
    The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.
  • Item
    Magnetic fields of Herbig Ae/Be stars
    (Les Ulis : EDP Sciences, 2014) Hubrig, S.; Ilyin, I.; Schöller, M.; Cowley, C.R.; Castelli, F.; Stelzer, B.; Gonzalez, J.-F.; Wolff, B.
    We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
  • Item
    Luminosity dependent accretion state change in GRO J1008-57
    (Les Ulis : EDP Sciences, 2014) Kühnel, M.; Müller, S.; Kreykenbohm, I.; Fürst, F.; Pottschmidt, K.; Rothschild, R.E.; Caballero, I.; Grinberg, V.; Schönherr, G.; Shrader, C.; Klochkov, D.; Staubert, R.; Ferrigno, C.; Torrejón, J.-M.; Martínez-Núñez, S.; Wilms, J.
    In a former publication, we have analyzed the transient neutron star X-ray binary GRO J1008-57 using all available RXTE-, Swift-, and Suzaku-data. As we have found, the source's spectral components, i.e., a power-law with high exponential cutoff and a black-body, are strongly correlated with the hard X-ray flux (15-50 keV). We update the analytical description of these dependence, including a change in the photon index behaviour from a flat to a logarithmic function. The flux, where the change occurs, is consistent with the onset of the black-body emission. Thus, a change of the accretion state always occurs in GRO J1008-57 at a particular flux level.
  • Item
    Simulation of cyclotron resonant scattering features: The effect of bulk velocity
    (Les Ulis : EDP Sciences, 2014) Schwarm, F.-W.; Schönherr, G.; Kühnel, M.; Wilms, J.
    X-ray binary systems consisting of a mass donating optical star and a highly magnetized neutron star, under the right circumstances, show quantum mechanical absorption features in the observed spectra called cyclotron resonant scattering features (CRSFs). We have developed a simulation to model CRSFs using Monte Carlo methods. We calculate Green's tables which can be used to imprint CRSFs to arbitrary X-ray continua. Our simulation keeps track of scattering parameters of individual photons, extends the number of variable parameters of previous works, and allows for more flexible geometries. Here we focus on the influence of bulk velocity of the accreted matter on the CRSF line shapes and positions.
  • Item
    The Herbig Ae SB2 system HD 104237
    (Les Ulis : EDP Sciences, 2014) Cowley, C.R.; Castelli, J.; Hubrig, S.
    We present here the most recent abundance analysis of this Herbig Ae system based on high-resolution UVES and HARPS spectra and the results of our magnetic field measurements using high-resolution spectra obtained with HARPSpol.
  • Item
    Differential population studies using asteroseismology: Solar-like oscillating giants in CoRoT fields LRc01 and LRa01
    (Les Ulis : EDP Sciences, 2013) Miglio, A.; Chiappini, C.; Morel, T.; Barbieri, M.; Chaplin, W.J.; Girardi, L.; Montalbán, J.; Noels, A.; Valentini, M.; Mosser, B.; Baudin, F.; Casagrande, L.; Fossati, L.; Aguirre, V.S.; Baglin, A.
    Solar-like oscillating giants observed by the space-borne satellites CoRoT and Kepler can be used as key tracers of stellar populations in the Milky Way. When combined with additional photometric/spectroscopic constraints, the pulsation spectra of solar-like oscillating giant stars not only reveal their radii, and hence distances, but also provide well-constrained estimates of their masses, which can be used as proxies for the ages of these evolved stars. In this contribution we provide supplementary material to the comparison we presented in Miglio et al. (2013) between populations of giants observed by CoRoT in the fields designated LRc01 and LRa01.
  • Item
    Constraining the formation of the Milky Way: Ages
    (Les Ulis : EDP Sciences, 2013) Chiappini, C.; Minchev, I.; Martig, M.
    We present a new approach for studying the chemodynamical evolution of the Milky Way, which combines a thin disk chemical evolution model with the dynamics from N-body simulation of a galaxy with properties similar to those of our Galaxy. A cosmological re-simulation is used as a surrogate in order to extract ∼11 Gyrs of self-consistent dynamical evolution. We are then in a position to quantify the impact of radial migration at the Solar Vicinity. We find that the distribution of birth radii, r0, of stars ending up in a solar neighborhood-like location after ∼11 Gyr of evolution peaks around r0 = 6 kpc due to radial migration. A wide range of birth radii is seen for different age groups. The strongest effect from radial migration is found for the oldest stars and it is connected to an early merger phase typical from cosmological simulations. We find that while the low-end in our simulated solar vicinity metallicity distribution is composed by stars with a wide range of birth radii, the tail at larger metallicities (0.25 <[Fe/H]< 0.6) results almost exclusively from stars with 3 < r0< 5 kpc. This is the region just inside the bar's corotation (CR), which is where the strongest outward radial migration occurs. The fraction of stars in this tail can, therefore, be related to the bar's dynamical properties, such as its strength, pattern speed and time evolution/formation. We show that one of the main observational constraints of this kind of models is the time variation of the abundance gradients in the disk. The most important outcome of our chemodynamical model is that, although we used only a thin-disc chemical evolution model, the oldest stars that are now in the solar vicinity show several of the properties usually attributed to the Galactic thick disc. In other words, in our model the MW "thick disc" emerges naturally from stars migrating from the inner disc very early on due to strong merger activity in the first couple of Gyr of disc formation, followed by further radial migration driven by the bar and spirals at later times. These results will be extended to other radius bins and more chemical elements in order to provide testable predictions once more precise information on ages and distances would become available (with Gaia, asteroseismology and future surveys such as 4MOST).