Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Modeling of Atmospheric-Pressure Dielectric Barrier Discharges in Argon with Small Admixtures of Tetramethylsilane

2021, Loffhagen, Detlef, Becker, Markus M., Czerny, Andreas K., Klages, Claus-Peter

A time-dependent, spatially one-dimensional fluid-Poisson model is applied to analyze the impact of small amounts of tetramethylsilane (TMS) as precursor on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established reaction kinetics for argon, it includes a plasma chemistry for TMS, which is validated by measurements of the ignition voltage at the frequency f=86.2kHz for TMS amounts of up to 200 ppm. Details of both a reduced Ar-TMS reaction kinetics scheme and an extended plasma-chemistry model involving about 60 species and 580 reactions related to TMS are given. It is found that good agreement between measured and calculated data can be obtained, when assuming that 25% of the reactions of TMS with excited argon atoms with a rate coefficient of 3.0×10−16m3/s lead to the production of electrons due to Penning ionization. Modeling results for an applied voltage Ua,0=4kV show that TMS is depleted during the residence time of the plasma in the DBD, where the percentage consumption of TMS decreases with increasing TMS fraction because only a finite number of excited argon species is available to dissociate and/or ionize the precursor via energy transfer. Main species resulting from that TMS depletion are presented and discussed. In particular, the analysis clearly indicates that trimethylsilyl cations can be considered to be mainly responsible for the film formation.

Loading...
Thumbnail Image
Item

A Comparison of Floating-Electrode DBD and kINPen Jet: Plasma Parameters to Achieve Similar Growth Reduction in Colon Cancer Cells Under Standardized Conditions

2017-9-6, Bekeschus, Sander, Lin, Abraham, Fridman, Alexander, Wende, Kristian, Weltmann, Klaus-Dieter, Miller, Vandana

A comparative study of two plasma sources (floating-electrode dielectric barrier discharge, DBD, Drexel University; atmospheric pressure argon plasma jet, kINPen, INP Greifswald) on cancer cell toxicity was performed. Cell culture protocols, cytotoxicity assays, and procedures for assessment of hydrogen peroxide (H2O2) were standardized between both labs. The inhibitory concentration 50 (IC50) and its corresponding H2O2 deposition was determined for both devices. For the DBD, IC50 and H2O2 generation were largely dependent on the total energy input but not pulsing frequency, treatment time, or total number of cells. DBD cytotoxicity could not be replicated by addition of H2O2 alone and was inhibited by larger amounts of liquid present during the treatment. Jet plasma toxicity depended on peroxide generation as well as total cell number and amount of liquid. Thus, the amount of liquid present during plasma treatment in vitro is key in attenuating short-lived species or other physical effects from plasmas. These in vitro results suggest a role of liquids in or on tissues during plasma treatment in a clinical setting. Additionally, we provide a platform for correlation between different plasma sources for a predefined cellular response.

Loading...
Thumbnail Image
Item

Effect of a Spatially Fluctuating Heating of Particles in a Plasma Spray Process

2022, Zhu, T., Baeva, M., Testrich, H., Kewitz, T., Foest, R.

The work is concerned with the effect of a spatially fluctuating heating of Al2O3 particles with diameters of 5–120 Î¼m during a plasma spray process. A plasma jet is generated in a mixture of Ar (40 NLPM) and H2 (14 NLPM) and in pure Ar at an electric current of 600 A. The tracing of the injected particles in the plume region of the plasma jets is considered in the framework of a three-dimensional model taking into account a turbulent fluid flow. It is shown that the heat source for the injected particles exhibits a well pronounced spatially fluctuating structure due to the enhancement of the thermal conductivity resulting from dissociation and ionization of the molecular gas in the temperature range of 2500–4000 K and 13,000–14,000 K, respectively. During their travel towards the substrate, the particles are therefore repeatedly heated in the gas mixture in contrast to the case of pure argon. Particles injected in the gas mixture reach the substrate with a higher average temperature and velocity.

Loading...
Thumbnail Image
Item

About the Development and Dynamics of Microdischarges in Toluene-Containing Air

2019, Brandenburg, Ronny, Jahanbakhsh, Sina, Schiorlin, Milko, Schmidt, Michael

The development of microdischarges and the inception dynamics of subsequent microdischarges in an electrode arrangement consisting of a metal pin and a hemispherical dielectric-covered electrode, operated in air with a small toluene admixture, is studied. The discharge is operated with sinusoidal high voltage. A gated ICCD camera and a current probe enable the recording of images and current pulses of the single microdischarges, respectively, while the spatio-temporally resolved development is measured with a multi-dimensional time-correlated single photon counting technique. The overall discharge dynamics changes significantly if a concentration of 35 ppm toluene is added to dry air. A lower high voltage amplitude than in dry air is needed for stable discharge operation. This can be explained by the lower ionization energy of toluene compared to molecular oxygen and nitrogen. The microdischarge development is the same with or without admixture, i.e. a positive (cathode directed) streamer mechanism is observed. Lower mean power is dissipated into the discharge when toluene is admixed. The main effect caused by toluene admixture is the suppression of high-energy microdischarges in case of the cathodic pin half-cycle of the sinusoidal high voltage. The influence on the inception voltage by additional ionization mechanisms and volume memory effects, the consumption of energetic electrons for toluene decomposition reactions, and the modification of the surface by plasma treatment are discussed as possible reasons.