Search Results

Now showing 1 - 6 of 6
  • Item
    Cyclic Octamer of Hydroxyl-functionalized Cations with Net Charge Q=+8e Kinetically Stabilized by a ‘Molecular Island’ of Cooperative Hydrogen Bonds
    (Weinheim : Wiley-VCH Verl., 2020) Philipp, Jule Kristin; Fritsch, Sebastian; Ludwig, Ralf
    Cyclic octamers are well-known structural motifs in chemistry, biology and physics. These include covalently bound cyclic octameric sulphur, cylic octa-alkanes, cyclo-octameric peptides as well as hydrogen-bonded ring clusters of alcohols. In this work, we show that even calculated cyclic octamers of hydroxy-functionalized pyridinium cations with a net charge Q=+8e are kinetically stable. Eight positively charged cations are kept together by hydrogen bonding despite the strong Coulomb repulsive forces. Sufficiently long hydroxy-octyl chains prevent “Coulomb explosion” by increasing the distance between the positive charges at the pyridinium rings, reducing the Coulomb repulsion and thus strengthen hydrogen bonds between the OH groups. The eightfold positively charged cyclic octamer shows spectroscopic properties similar to those obtained for hydrogen-bonded neutral cyclic octamers of methanol. Thus, the area of the hydrogen bonded OH ring represents a ‘molecular island’ within an overall cationic environment. Although not observable, the spectroscopic properties and the correlated NBO parameters of the calculated cationic octamer support the detection of smaller cationic clusters in ionic liquids, which we observed despite the competition with ion pairs wherein attractive Coulomb forces enhance hydrogen bonding between cation and anion. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Palladium-Catalyzed Alkoxycarbonylation of sec-Benzylic Ethers
    (Weinheim : Wiley-VCH Verl., 2020) Schneider, Carolin; Jackstell, Ralf; Maes, Bert U.W.; Beller, Matthias
    Herein, we report the palladium-catalyzed synthesis of 3-arylpropionate esters starting from secondary benzylic ethers. With this investigation it could be shown that ethers are suitable starting materials in addition to the established carbonylation reactions of olefins, alcohols, or aryl halides. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Site-Selective Real-Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using L-Edge X-Ray Absorption Spectroscopy
    (Weinheim : Wiley-VCH Verl., 2021) Britz, Alexander; Bokarev, Sergey I.; Assefa, Tadesse A.; Bajnóczi, Èva G.; Németh, Zoltán; Vankó, György; Rockstroh, Nils; Junge, Henrik; Beller, Matthias; Doumy, Gilles; March, Anne Marie; Southworth, Stephen H.; Lochbrunner, Stefan; Kühn, Oliver; Bressler, Christian; Gawelda, Wojciech
    Time-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.
  • Item
    Three in One: The Versatility of Hydrogen Bonding Interaction in Halide Salts with Hydroxy-Functionalized Pyridinium Cations
    (Weinheim : Wiley-VCH Verl., 2021) Al Sheakh, Loai; Niemann, Thomas; Villinger, Alexander; Stange, Peter; Zaitsau, Dzmitry H.; Strate, Anne; Ludwig, Ralf
    The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOCn Py]+ (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: 'intra-ionic' H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and 'inter-ionic' H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!
  • Item
    Like-likes-Like: Cooperative Hydrogen Bonding Overcomes Coulomb Repulsion in Cationic Clusters with Net Charges up to Q=+6e
    (Weinheim : Wiley-VCH Verl., 2018-4-26) Niemann, Thomas; Stange, Peter; Strate, Anne; Ludwig, Ralf
    Quantum chemical calculations have been employed to study kinetically stable cationic clusters, wherein the monovalent cations are trapped by hydrogen bonding despite strongly repulsive electrostatic forces. We calculated linear and cyclic clusters of the hydroxy-functionalized cation N-(3-hydroxypropyl) pyridinium, commonly used as cation in ionic liquids. The largest kinetically stable cluster was a cyclic hexamer that very much resembles the structural motifs of molecular clusters, as known for water and alcohols. Surprisingly, strong cooperative hydrogen bonds overcome electrostatic repulsion and result in cationic clusters with a high net charge up to Q=+6e. The structural, spectroscopic, and electronic signatures of the cationic and related molecular clusters of 3-phenyl-1-propanol could be correlated to NBO parameters, supporting the existence of “anti-electrostatic” hydrogen bonds (AEHB), as recently suggested by Weinhold. We also showed that dispersion forces enhance the cationic cluster formation and compensate the electrostatic repulsion of one additional positive charge.
  • Item
    Air-Stable CpCoI–Phosphite–Fumarate Precatalyst in Cyclization Reactions: Comparing Different Methods of Energy Supply
    (Weinheim : Wiley-VCH Verl., 2018) Fischer, Fabian; Hapke, Marko
    The robust CoI precatalyst [CpCo(P{OEt}3)(trans-MeO2CHC=CHCO2Me)] was investigated in cyclotrimerizations, furnishing benzenes and pyridines from triynes, diynes and nitriles, comparing the influence of different ways of energy supply; namely, irradiation and conventional (thermal) or microwave heating. The precatalyst was found to work under all conditions, including the possibility to catalyze cyclotrimerizations at room temperature under photochemical conditions at longer reaction times. Performance of the reactions in a microwave reactor proved to be the most time-efficient way to rapidly assemble the expected reaction products; however, careful selection of reaction conditions can be required. The synthesis of pyridines and isoquinolines successfully involved the utilization of versatile functionalized nitriles, affording structurally interesting reaction products. Comparison with the known and often applied precatalyst CpCo(CO)2 demonstrated the significantly higher reactivity of the CpCoI–phosphite–olefin precatalyst.