Search Results

Now showing 1 - 7 of 7
  • Item
    Carbons and electrolytes for advanced supercapacitors
    (Hoboken, NJ : Wiley, 2014) Presser, Volker
    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
  • Item
    Synthesis and characterization of poly(1,2,3-triazole)s with inherent high sulfur content for optical applications
    (Hoboken, NJ : Wiley, 2023) Mazumder, Kajari; Komber, Hartmut; Bittrich, Eva; Voit, Brigitte; Banerjee, Susanta
    The synthesis of solution-processable sulfur-containing polytriazoles for optoelectronic applications is a relatively less explored domain in polymer research. The synthesis of novel bifunctional (DA) and trifunctional (TA) azido-monomers with inherent high sulfur content and of organo-soluble high refractive index poly(1,2,3-triazole)s using the azido-monomers via Cu(I) assisted click polymerization reactions are reported in this work. The azido-monomers were synthesized by the conversion of previously reported amine-functionalized compounds to azides using azidotrimethylsilane in a polar aprotic solvent. Dialkyne monomers were also synthesized and reacted with the azides to prepare a series of five linear and two hyperbranched poly(1,2,3-triazole)s. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermogravimetric analysis were used to characterize the synthesized polymers. It was also demonstrated that the use of the trifunctional azide in optimized conditions resulted in increased solubility of an otherwise insoluble linear poly(1,2,3-triazole). The optical characterization of the polymers was carried out on thin polymer films with thickness in the nanometer range, which were successfully prepared by spin-coating on silicon wafers. It was found that the increase in the sulfur and aromatic content in the polymer backbone successfully increased the refractive index of the polymers up to 1.743 at 589 nm.
  • Item
    Get more out of your data: A new approach to agglomeration and aggregation studies using nanoparticle impact experiments
    (Hoboken, NJ : Wiley, 2013) Ellison, Joanna; Tschulik, Kristina; Stuart, Emma J.E.; Jurkschat, Kerstin; Omanovi´c, Dario; Uhlemann, Margitta; Crossley, Alison; Compton, Richard G.
    Anodic particle coloumetry is used to size silver nanoparticles impacting a carbon microelectrode in a potassium chloride/citrate solution. Besides their size, their agglomeration state in solution is also investigated solely by electrochemical means and subsequent data analysis. Validation of this new approach to nanoparticle agglomeration studies is performed by comparison with the results of a commercially available nanoparticle tracking analysis system, which shows excellent agreement. Moreover, it is demonstrated that the electrochemical technique has the advantage of directly yielding the number of atoms per impacting nanoparticle irrespective of its shape. This is not true for the optical nanoparticle tracking system, which requires a correction for the nonspherical shape of agglomerated nanoparticles to derive reasonable information on the agglomeration state.
  • Item
    Synthesis and isolation of the titanium–scandium endohedral fullerenes—Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80 and Sc2TiC2@Ih‐C80: Metal size tuning of the TiIV/TiIII redox potentials
    (Hoboken, NJ : Wiley, 2016) Junghans, Katrin; Ghiassi, Kamran B.; Samoylova, Nataliya A.; Deng, Qingming; Rosenkranz, Marco; Olmstead, Marylin M.; Balch, Alan L.; Popov, Alexey A.
    The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed‐metal Sc–Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4C2@C80 (the most abundant EMF from this synthesis), Sc3C2@C80, isomers of Sc2C2@C82, and the family Sc2C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. The Sc–Ti/CH4 system produces the mixed‐metal Sc2TiC@C2 n (2 n=68, 78, 80) and Sc2TiC2@C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition‐metal‐containing endohedral fullerenes, Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80, and Sc2TiC2@Ih‐C80, were characterized by NMR spectroscopy. The structure of Sc2TiC@Ih‐C80 was also determined by single‐crystal X‐ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2TiC‐ and Sc2TiC2‐containing clusterfullerenes have Ti‐localized LUMOs. Encapsulation of the redox‐active Ti ion inside the fullerene cage enables analysis of the cluster–cage strain in the endohedral fullerenes through electrochemical measurements.
  • Item
    Capacitive deionization using biomass-based microporous salt-templated heteroatom-doped carbons
    (Hoboken, NJ : Wiley, 2015) Porada, Slawomir; Schipper, Florian; Aslan, Mesut; Antonietti, Markus; Presser, Volker; Fellinger, Tim-Patrick
    Microporous carbons are an interesting material for electrochemical applications. In this study, we evaluate several such carbons without/with N or S doping with regard to capacitive deionization. For this purpose, we extent the salt-templating synthesis towards biomass precursors and S-doped microporous carbons. The sample with the largest specific surface area (2830 m2 g−1) showed 1.0 wt % N and exhibited a high salt-sorption capacity of 15.0 mg g−1 at 1.2 V in 5 mM aqueous NaCl. While being a promising material from an equilibrium performance point of view, our study also gives first insights to practical limitations of heteroatom-doped carbon materials. We show that high heteroatom content may be associated with a low charge efficiency. The latter is a key parameter for capacitive deionization and is defined as the ratio between the amounts of removed salt molecules and electrical charge.
  • Item
    Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors
    (Hoboken, NJ : Wiley, 2014) Weingarth, Daniel; Zeiger, Marco; Jäckel, Nicolas; Aslan, Mesut; Feng, Guang; Presser, Volker
    Most efforts to improve the energy density of supercapacitors are currently dedicated to optimized porosity or hybrid devices employing pseudocapacitive elements. Little attention has been given to the effects of the low charge carrier density of carbon on the total material capacitance. To study the effect of graphitization on the differential capacitance, carbon onion (also known as onion-like carbon) supercapacitors are chosen. The increase in density of states (DOS) related to the low density of charge carriers in carbon materials is an important effect that leads to a substantial increase in capacitance as the electrode potential is increased. Using carbon onions as a model, it is shown that this phenomenon cannot be related only to geometric aspects but must be the result of varying graphitization. This provides a new tool to significantly improve carbon supercapacitor performance, in addition to having significant consequences for the modeling community where carbons usually are approximated to be ideal metallic conductors. Data on the structure, composition, and phase content of carbon onions are presented and the correlation between electrochemical performance and electrical resistance and graphitization is shown. Highly graphitic carbons show a stronger degree of electrochemical doping, making them very attractive for enhancing the capacitance.
  • Item
    Acid‐Base Interactions of Pyrazine, Ethyl Acetate, Di‐alcohols, and Lysine with the cyclic Alumosiloxane (Ph2SiO)8[Al(O)OH]4 in View of Mimicking Al2O3(H2O) Surface Reactions
    (Hoboken, NJ : Wiley, 2020) Veith, Michael; Kolano, David; Huch, Volker
    The etherate of (Ph2SiO)8[Al(O)OH]4 can be transformed into the pyrazine adduct (Ph2SiO)8[Al(O)OH]4·3N(C2H2)2N (1), the ethyl acetate adduct (Ph2SiO)8[Al(O)OH]4·3H3C‐C(O)OC2H5 (2), the 1,6‐hexane diol adduct (Ph2SiO)8[Al(O)OH]4·2HO–CH2(CH2)4CH2–OH (3) and the 1,4‐cyclohexane diol adduct (Ph2SiO)8[Al(O)OH]4·4HO–CH(CH2CH2)2CH–OH (4). In all compounds the OH groups of the starting material bind to the bases through O–H···N (1) or O–H···O hydrogen bonds (2, 3, 4) as found from single‐crystal X‐ray diffraction analyses. Whereas in 1 only three of the central OH groups bind to the pyrazines, in 2 two of them bind to the same carbonyl oxygen atom of the ethyl acetate resulting in an unprecedented O–H···O···H–O double hydrogen bridge. The hexane diol adduct 3 in the crystal forms a one‐dimensional coordination polymer with an intramolecularly to two OH groups grafted hexane diol loop, while the second hexane diol is connecting intermolecularly. In the cyclohexane diol adduct 4 all OH groups of the central Al4(OH)4 ring bind to different diols, leaving one alcohol group per diol uncoordinated. These “free” OH groups form an (O‐H···)4 assembly creating a three‐dimensional overall structure. When reacting with (Ph2SiO)8[Al(O)OH]4 lysine loses water, turns into the cyclic 3‐amino‐2‐azepanone, and transforms through chelation of one of the aluminum atoms the starting material into a new polycycle. The isolated compound has the composition (Ph2SiO)12[Al(O)OH]4[Al2O3]2·4 C6H12N2O·6(CH2)4O (5).