Search Results

Now showing 1 - 3 of 3
  • Item
    Redetermination of EuScO3
    (Chester : International Union of Crystallography, 2009) Kahlenberg, V.; Maier, D.; Veličkov, B.
    Single crystals of europium(III) scandate(III), with ideal formula EuScO3, were grown from the melt using the micro-pulling-down method. The title compound crystallizes in an ortho-rhom-bic distorted perovskite-type structure, where Eu occupies the eightfold coordinated A sites (site symmetry m) and Sc resides on the centres of corner-sharing [ScO6] octa-hedra (B sites with site symmetry ). The structure of EuScO3 has been reported previously based on powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The results of the current redetermination based on single-crystal diffraction data shows an improvement in the precision of the structral and geometric parameters and reveals a defect-type structure. Site-occupancy refinements indicate an Eu deficiency on the A site coupled with O defects on one of the two O-atom positions. The crystallochemical formula of the investigated sample may thus be written as A(0.032Eu0.968)BScO2.952.
  • Item
    Redetermination of terbium scandate, revealing a defect-type perovskite derivative
    (Chester : International Union of Crystallography, 2008) Veličkov, B.; Kahlenberg, V.; Bertram, R.; Uecker, R.
    The crystal structure of terbium(III) scandate(III), with ideal formula TbScO3, has been reported previously on the basis of powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The current data were obtained from single crystals grown by the Czochralski method and show an improvement in the precision of the geometric parameters. Moreover, inductively coupled plasma optical emission spectrometry studies resulted in a nonstoichiometric composition of the title compound. Site-occupancy refinements based on diffraction data support the idea of a Tb deficiency on the A site (inducing O defects on the O2 position). The crystallochemical formula of the investigated sample thus may be written as A(0.04Tb0.96) BScO2.94. In the title compound, Tb occupies the eightfold- coordinated sites (site symmetry m) and Sc the centres of corner-sharing [ScO6] octa-hedra (site symmetry ). The mean bond lengths and site distortions fit well into the data of the remaining lanthanoid scandates in the series from DyScO3 to NdScO3. A linear structural evolution with the size of the lanthanoid from DyScO3 to NdScO3 can be predicted.
  • Item
    Electronic materials with a wide band gap: Recent developments
    (Chester : International Union of Crystallography, 2014) Klimm, D.
    The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap E g = 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (E g = 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider E g were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.