Search Results

Now showing 1 - 10 of 18
  • Item
    Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber
    (Washington, DC : Soc., 2015) Faez, Sanli; Lahini, Yoav; Weidlich, Stefan; Garmann, Rees F.; Wondraczek, Katrin; Zeisberger, Matthias; Schmidt, Markus A.; Orrit, Michel; Manoharan, Vinothan N.
    High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.
  • Item
    Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
    (Washington, DC : Soc., 2023) Corley-Wiciak, Cedric; Richter, Carsten; Zoellner, Marvin H.; Zaitsev, Ignatii; Manganelli, Costanza L.; Zatterin, Edoardo; Schülli, Tobias U.; Corley-Wiciak, Agnieszka A.; Katzer, Jens; Reichmann, Felix; Klesse, Wolfgang M.; Hendrickx, Nico W.; Sammak, Amir; Veldhorst, Menno; Scappucci, Giordano; Virgilio, Michele; Capellini, Giovanni
    A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.
  • Item
    Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance
    (Washington, DC : Soc., 2018) Kuttner, Christian; Mayer, Martin; Dulle, Martin; Moscoso, Ana; López-Romero, Juan Manuel; Förster, Stephan; Fery, Andreas; Pérez-Juste, Jorge; Contreras-Cáceres, Rafael
    We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.
  • Item
    Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading
    (Washington, DC : Soc., 2020) Schroepfer, Michaela; Junghans, Frauke; Voigt, Diana; Meyer, Michael; Breier, Anette; Schulze-Tanzil, Gundula; Prade, Ina
    For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein-but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility. Copyright © 2020 American Chemical Society.
  • Item
    Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties
    (Washington, DC : Soc., 2016) Höller, Roland P. M.; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish
    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.
  • Item
    Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion
    (Washington, DC : Soc., 2018-7-20) Schneider, Falk; Waithe, Dominic; Lagerholm, B. Christoffer; Shrestha, Dilip; Sezgin, Erdinc; Eggeling, Christian; Fritzsche, Marco
    Cells rely on versatile diffusion dynamics in their plasma membrane. Quantification of this often heterogeneous diffusion is essential to the understanding of cell regulation and function. Yet such measurements remain a major challenge in cell biology, usually due to low sampling throughput, a necessity for dedicated equipment, sophisticated fluorescent label strategies, and limited sensitivity. Here, we introduce a robust, broadly applicable statistical analysis pipeline for large scanning fluorescence correlation spectroscopy data sets, which uncovers the nanoscale heterogeneity of the plasma membrane in living cells by differentiating free from hindered diffusion modes of fluorescent lipid and protein analogues.
  • Item
    Mechanical Robustness of Graphene on Flexible Transparent Substrates
    (Washington, DC : Soc., 2016) Kang, Moon H.; Prieto López, Lizbeth O.; Chen, Bingan; Teo, Ken; Williams, John A.; Milne, William I.; Cole, Matthew T.
    This study reports on a facile and widely applicable method of transferring chemical vapor deposited (CVD) graphene uniformly onto optically transparent and mechanically flexible substrates using commercially available, low-cost ultraviolet adhesive (UVA) and hot-press lamination (HPL). We report on the adhesion potential between the graphene and the substrate, and we compare these findings with those of the more commonly used cast polymer handler transfer processes. Graphene transferred with the two proposed methods showed lower surface energy and displayed a higher degree of adhesion (UVA: 4.40 ± 1.09 N/m, HPL: 0.60 ± 0.26 N/m) compared to equivalent CVD-graphene transferred using conventional poly(methyl methacrylate) (PMMA: 0.44 ± 0.06 N/m). The mechanical robustness of the transferred graphene was investigated by measuring the differential resistance as a function of bend angle and repeated bend–relax cycles across a range of bend radii. At a bend angle of 100° and a 2.5 mm bend radius, for both transfer techniques, the normalized resistance of graphene transferred on polyethylene terephthalate (PET) was around 80 times less than that of indium–tin oxide on PET. After 104 bend cycles, the resistance of the transferred graphene on PET using UVA and HPL was found to be, on average, around 25.5 and 8.1% higher than that of PMMA-transferred graphene, indicating that UVA- and HPL-transferred graphene are more strongly adhered compared to PMMA-transferred graphene. The robustness, in terms of maintained electrical performance upon mechanical fatigue, of the transferred graphene was around 60 times improved over ITO/PET upon many thousands of repeated bending stress cycles. On the basis of present production methods, the development of the next-generation of highly conformal, diverse form factor electronics, exploiting the emerging family of two-dimensional materials, necessitates the development of simple, low-cost, and mechanically robust transfer processes; the developed UVA and HPL approaches show significant potential and allow for large-area-compatible, near-room temperature transfer of graphene onto a diverse range of polymeric supports.
  • Item
    Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles
    (Washington, DC : Soc., 2020) Sheng, Wenbo; Li, Wei; Tan, Deming; Zhang, Panpan; Zhang, En; Sheremet, Evgeniya; Schmidt, Bernhard V.K.J.; Feng, Xinliang; Rodriguez, Raul D.; Jordan, Rainer; Amin, Ihsan
    Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation. Copyright © 2020 American Chemical Society.
  • Item
    Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes
    (Washington, DC : Soc., 2016) Xi, Wang; Schmidt, Christine K.; Sanchez, Samuel; Gracias, David H.; Carazo-Salas, Rafael E.; Butler, Richard; Lawrence, Nicola; Jackson, Stephen P.; Schmidt, Oliver G.
    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo.
  • Item
    Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly
    (Washington, DC : Soc., 2019) Gupta, Vaibhav; Probst, Patrick T.; Goßler, Fabian R.; Steiner, Anja Maria; Schubert, Jonas; Brasse, Yannic; König, Tobias A.F.; Fery, Andreas
    We demonstrate a novel colloidal self-assembly approach toward obtaining mechanically tunable, cost-efficient, and low-loss plasmonic nanostructures that show pronounced optical anisotropy upon mechanical deformation. Soft lithography and template-assisted colloidal self-assembly are used to fabricate a stretchable periodic square lattice of gold nanoparticles on macroscopic areas. We stress the impact of particle size distribution on the resulting optical properties. To this end, lattices of narrowly distributed particles (∼2% standard deviation in diameter) are compared with those composed of polydisperse ones (∼14% standard deviation). The enhanced particle quality sharpens the collective surface lattice resonances by 40% to achieve a full width at half-maximum as low as 16 nm. This high optical quality approaches the theoretical limit for this system, as revealed by electromagnetic simulations. One hundred stretching cycles demonstrate a reversible transformation from a square to a rectangular lattice, accompanied by polarization-dependent optical properties. On the basis of these findings we envisage the potential applications as strain sensors and mechanically tunable filters. © 2019 American Chemical Society.