Search Results

Now showing 1 - 10 of 19
  • Item
    Mechanistic Understanding of the Heterogeneous, Rhodium-Cyclic (Alkyl)(Amino)Carbene-Catalyzed (Fluoro-)Arene Hydrogenation
    (Washington, DC : American Chemical Society, 2020) Moock D.; Wiesenfeldt M.P.; Freitag M.; Muratsugu S.; Ikemoto S.; Knitsch R.; Schneidewind J.; Baumann W.; Schäfer A.H.; Timmer A.; Tada M.; Hansen M.R.; Glorius F.
    Recently, chemoselective methods for the hydrogenation of fluorinated, silylated, and borylated arenes have been developed providing direct access to previously unattainable, valuable products. Herein, a comprehensive study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC) catalyst precursor is disclosed. Mechanistic experiments, kinetic studies, and surface-spectroscopic methods revealed supported rhodium(0) nanoparticles (NP) as the active catalytic species. Further studies suggest that CAAC-derived modifiers play a key role in determining the chemoselectivity of the hydrogenation of fluorinated arenes, thus offering an avenue for further tuning of the catalytic properties. Copyright © 2020 American Chemical Society.
  • Item
    Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Ameli, A.; Arjmand, M.; Pötschke, Petra; Krause, Beate; Sundararaj, U.
    This study reports on nitrogen-doped carbon nanotube (N-CNT)/polymer nanocomposites exhibiting relatively high and frequency independent real permittivity (ϵ′) together with low dielectric loss (tan δ). N-CNTs were synthesized by chemical vapor deposition, and their nanocomposites were prepared by melt-mixing with polyvinylidene fluoride (PVDF). In the synthesis of N-CNTs, three catalysts of Co, Fe and Ni, and three temperatures of 650, 750 and 950 °C were employed. The morphology, aspect ratio, synthesis yield, remaining residue, nitrogen content, nitrogen bonding type, and powder conductivity of N-CNTs, and the morphology, polar crystalline phase, and broadband dielectric properties of N-CNT/PVDF nanocomposites were investigated. The results revealed that by proper selection of synthesis catalyst (Fe) and temperature (650 °C and 950 °C), nitrogen doping generated polarizable nanotubes via providing local polarization sites, and resulted in nanocomposites with favorable dielectric properties for charge storage applications at N-CNT loadings as low as 1.0 wt%. As a result, 3.5 wt% (N-CNT)Fe/950°C/PVDF nanocomposites exhibited an insulative behavior with ϵ' = 23.12 and tan δ = 0.05 at 1 kHz, a combination superior to that of PVDF, i.e., ϵ' = 8.4 and tan δ = 0.03 and to those of percolative nanocomposites, e.g., ϵ' = 71.20 and tan δ = 63.20 for 3.5 wt% (N-CNT)Fe/750°C/PVDF. Also, the relationships between the dielectric properties, N-CNT structure, and nanocomposite morphology were identified.
  • Item
    Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Arjmand, Mohammad; Chizari, Kambiz; Krause, Beate; Pötschke, Petra; Sundararaj, Uttandaraman
    Different catalysts including Co, Fe, and Ni were used to synthesize nitrogen-doped carbon nanotubes (N-CNTs) by chemical vapor deposition technique. Synthesized N-CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a small scale mixer at different concentrations ranging from 0.3 to 3.5 wt%, and then compression molded. The characterization techniques revealed significant differences in the synthesis yield and the morphological and electrical properties of both N-CNTs and nanocomposites depending on the catalyst type. Whereas Co and Fe resulted in yields comparable to industrial multiwalled CNTs, Ni was much less effective. The N-CNT aspect ratio was the highest for Co catalyst, followed by Ni and Fe, whereas nitrogen content was the highest for Ni. Raman spectroscopy revealed lowest defect number and highest N-CNT crystallinity for Fe catalyst. Characterization of N-CNT/PVDF nanocomposites showed better dispersion for N-CNTs based on Co and Fe as compared to Ni, and the following order of electrical conductivity and electromagnetic interference shielding (from high to low): Co > Fe > Ni. The superior electrical properties of (N-CNT)Co nanocomposites were ascribed to a combination of high synthesis yield, high aspect ratio, low nitrogen content and high crystallinity of N-CNTs combined with a good state of N-CNT dispersion.
  • Item
    Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts
    (London : RSC Publ., 2015) Prymak, Iuliia; Kalevaru, Venkata Narayana; Wohlrab, Sebastian; Martin, Andreas
    CexZr1−xO2 (x = 0, 0.2, 0.5, 0.8 and 1.0) solids were prepared by a citrate method and characterized by various techniques such as N2-adsorption (BET-SA), XRD, XPS, TEM, H2-TPR, NH3- and CO2-TPD. The catalytic performance of these solids was evaluated for the direct synthesis of diethyl carbonate (DEC) from ethanol and CO2 in continuous mode using a plug-flow reactor (PFR). According to thermodynamic data, the reaction is favourable at low reaction temperatures and high reaction pressures. Thus, the catalytic experiments were carried out at reaction temperatures ranging from 80 to 180 °C and at reaction pressures from 80 to 180 bar. The CexZr1−xO2 catalysts exhibited significant differences in their performance mainly depending on (i) their Ce : Zr ratio and (ii) the different acid–base characteristics. Among the series Ce0.8Zr0.2O2 (C80Z) and Ce0.5Zr0.5O2 (C50Z) catalysts displayed the most efficient performance. Moreover, C80Z, pretreated at 700 °C, yielded DEC at the equilibrium conversion level of YDEC ~ 0.7% at 140 °C and 140 bar at a CO2 : ethanol ratio of 6 : 1 at a LHSV of 42 Lliq kgcat−1 h−1.
  • Item
    Cobalt-catalysed reductive C-H alkylation of indoles using carboxylic acids and molecular hydrogen
    (Cambridge : RSC, 2017) Cabrero-Antonino, Jose R.; Adam, Rosa; Junge, Kathrin; Beller, Matthias
    The direct CH-alkylation of indoles using carboxylic acids is presented for the first time. The catalytic system based on the combination of Co(acac)3 and 1,1,1-tris(diphenylphosphinomethyl)-ethane (Triphos, L1), in the presence of Al(OTf)3 as co-catalyst, is able to perform the reductive alkylation of 2-methyl-1H-indole with a wide range of carboxylic acids. The utility of the protocol was further demonstrated through the C3 alkylation of several substituted indole derivatives using acetic, phenylacetic or diphenylacetic acids. In addition, a careful selection of the reaction conditions allowed to perform the selective C3 alkenylation of some indole derivatives. Moreover, the alkenylation of C2 position of 3-methyl-1H-indole was also possible. Control experiments indicate that the aldehyde, in situ formed from the carboxylic acid hydrogenation, plays a central role in the overall process. This new protocol enables the direct functionalization of indoles with readily available and stable carboxylic acids using a non-precious metal based catalyst and hydrogen as reductant.
  • Item
    Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions
    (Cambridge : RSC, 2017) Sherborne, Grant J.; Adomeit, Sven; Menzel, Robert; Rabeah, Jabor; Brückner, Angelika; Fielding, Mark R.; Willans, Charlotte E.; Nguyen, Bao N.
    A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.
  • Item
    A general strategy for the synthesis of α-trifluoromethyl- and α-perfluoroalkyl-β-lactams via palladium-catalyzed carbonylation
    (Cambridge : RSC, 2021) Li, Yang; Zhang, Cai-Lin; Huang, Wei-Heng; Sun, Ning; Hao, Meng; Neumann, Helfried; Beller, Matthias
    β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-β-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated β-lactams in high yields. © The Royal Society of Chemistry 2021.
  • Item
    General and selective synthesis of primary amines using Ni-based homogeneous catalysts
    (Cambridge : RSC, 2020) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2metathesis as the rate-determining step. © The Royal Society of Chemistry 2020.
  • Item
    Design of a core-shell catalyst : an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins
    (Cambridge : RSC, 2020) Tan, Li; Wang, Fan; Zhang, Peipe; Suzuki, Yuichi; Wu, Yingquan; Chen, Jiangang; Yang, Guohui; Tsubaki, Noritatsu
    An elegant catalyst is designedviathe encapsulation of metallic oxide Zn-Cr inside of zeolite SAPO34 as a core-shell structure (Zn-Cr@SAPO) to realize the coupling of methanol-synthesis and methanol-to-olefin reactions. It can not only break through the limitation of the Anderson-Schulz-Flory distribution but can also overcome the disadvantages of physical mixture catalysts, such as excessive CO2formation. The confinement effect, hierarchical structure and extremely short distance between the two active components result in the Zn-Cr@SAPO capsule catalyst having better mass transfer and diffusion with a boosted synergistic effect. Due to the difference between the adsorption energies of the Zn-Cr metallic oxide/SAPO zeolite physical mixture and capsule catalysts, the produced water and light olefins are easily removed from the Zn-Cr@SAPO capsule catalyst after formation, suppressing the side reactions. The light olefin space time yield (STY) of the capsule catalyst is more than twice that of the typical physical mixture catalyst. The designed capsule catalyst has superior potential for scale-up in industrial applications while simultaneously extending the capabilities of hybrid catalysts for other tandem catalysis reactions through this strategy. © The Royal Society of Chemistry 2020.
  • Item
    Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes
    (Cambridge : RSC, 2017) Chen, Feng; Sahoo, Basudev; Kreyenschulte, Carsten; Lund, Henrik; Zeng, Min; He, Lin; Junge, Kathrin; Beller, Matthias
    Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.