Search Results

Now showing 1 - 3 of 3
  • Item
    Switchable Release of Bone Morphogenetic Protein from Thermoresponsive Poly(NIPAM-co-DMAEMA)/Cellulose Sulfate Particle Coatings
    (Basel : MDPI, 2018) Müller, Martin; Urban, Birgit; Reis, Berthold; Yu, Xiaoqian; Grab, Anna Luise; Cavalcanti-Adam, Elisabetta Ada; Kuckling, Dirk
    Thermoresponsive coatings of poly(N-isopropylacrylamide-co-DMAEMA)/cellulose sulfate (PNIPAM-DMAEMA/CS) complexes are reported eluting bone-morphogenetic-protein-2 (BMP-2) on demand relevant for implant assisted local bone healing. PNIPAM-DMAEMA/CS dispersions contained colloid particles with hydrodynamic radii RH = 170–288 nm at T = 25 °C shrinking to RH = 74–103 nm at T = 60 °C. Obviously, PNIPAM-DMAEMA/CS undergoes volume phase transition (VPT) analogously to pure PNIPAM, when critical VPT temperature (VPTT) is exceeded. Temperature dependent turbidity measurements revealed broad VPT and VPTT 47 °C for PNIPAM-DMAEMA/CS colloid dispersions at pH = 7.0. FTIR spectroscopy on thermoresponsive PNIPAM-DMAEMA/CS particle coatings at germanium model substrates under HEPES buffer indicated both wet-adhesiveness and VPT behavior based on diagnostic band intensity increases with temperature. From respective temperature courses empirical VPTT ≈ 42 °C for PNIPAM-DMAEMA/CS coatings at pH = 7.0 were found, which were comparable to VPTT found for respective dispersions. Finally, the PNIPAM-DMAEMA/CS coatings were loaded with BMP-2 and model protein papain (PAP). Time dependent FTIR spectroscopic measurements showed, that for T = 37 °C there was a relative protein release of ≈30% for PAP and ≈10% for BMP-2 after 24 h, which did not increase further. Heating to T = 42 °C for PAP and to 47 °C for BMP-2 further secondary protein release of ≈20% after 24 h was found, respectively, interesting for clinical applications. BMP-2 eluted even at 47 °C was found to be still biologically active
  • Item
    Exploring Structure–Property Relationships of GAGs to Tailor ECM-Mimicking Hydrogels
    (Basel : MDPI, 2018) Zimmermann, Ralf; Werner, Carsten; Sterling, James
    Glycosaminoglycans (GAGs) are a class of linear polysaccharides that are ubiquitous in the extracellular matrix (ECM) and on cell surfaces. Due to their key role in development, homeostasis, pathogenesis, and regeneration, GAGs are increasingly used in the design of ECM-mimicking hydrogels to stimulate tissue formation and regenerative processes via specifically orchestrated cell-instructive signals. These applications first and foremost build on the ability of GAGs to effectively bind, protect, and release morphogens. The specificity and strength of morphogen-GAG interactions are largely governed by the number and spatial distribution of negatively charged sulfate groups carried by GAGs. Herein, we summarize a mean-field approach to quantify the density of ionizable groups, GAG concentration, and cross-linking degree of GAG-containing hydrogels on the basis of microslit electrokinetic experiments. We further present and discuss a continuum model of mucosa that accounts for charge regulation by glycan-ion pairing in biological contexts and under conditions of macromolecular crowding. Finally, we discuss the modulation of the morphogen binding and transport in GAG hydrogels by selective desulfation of the GAG component.
  • Item
    Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers
    (Basel : MDPI, 2018) Yang, Bo; Wang, Rui; Ma, Hui-Ling; Li, Xiaolu; Brünig, Harald; Dong, Zhenfeng; Qi, Yue; Zhang, Xiuqin
    Poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blend as-spun fibers (50/50, wt.%) were prepared by melt spinning. Structure mediation under temperature and stress and properties of poly(l-lactic acid)/poly(d-lactic acid)(PLLA/PDLA) as-spun fibers were investigated by wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). The results show that highly oriented stereocomplex (SC) crystals can be formed in PLLA/PDLA blend fibers drawn at 60 °C and annealed at 200 °C. However, at drawn temperature of 80 °C, only lower oriented SC crystals can be formed. For PLLA/PDLA blend fibers drawn twice at 60 °C (PLLA/PDLA-60-2), the crystallinity of SC crystals increases with annealing temperature in the range of 200 to 215 °C, while the degree of orientation decreases slightly. When the annealing temperature is 210 °C, the crystallinity and orientation of SC crystals in PLLA/PDLA-60-2 fibers reach 51% and −0.39, respectively. Moreover, PLLA/PDLA-60-2-210 fibers exhibit excellent heat-resistant property even at 200 °C. The results indicate that the oriented PLLA/PDLA blend fibers with high SC crystals content can be regulated in a short time.