Search Results

Now showing 1 - 10 of 150
  • Item
    Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background
    (Milton Park : Taylor & Francis, 2013) Cusack, Michael; Pérez, NoemÍ; Pey, Jorge; Wiedensohler, Alfred; Alastuey, Andrés
    This study focuses on the daily and seasonal variability of particle number size distributions and concentrations, performed at the Montseny (MSY) regional background station in the western Mediterranean from October 2010 to June 2011. Particle number concentrations at MSY were shown to be within range of various other sites across Europe reported in literature, but the seasonality of the particle number size distributions revealed significant differences. The Aitken mode is the dominant particle mode at MSY, with arithmetic mean concentrations of 1698 cm3, followed by the accumulation mode (877 cm3) and the nucleation mode (246 cm3). Concentrations showed a strong seasonal variability with large increases in particle number concentrations observed from the colder to warmer months. The modality of median size distributions was typically bimodal, except under polluted conditions when the size distribution was unimodal. During the colder months, the daily variation of particle number size distributions are strongly influenced by a diurnal breeze system, whereby the Aitken and accumulation modes vary similarly to PM1 and BC mass concentrations, with nocturnal minima and sharp day-time increases owing to the development of a diurnal mountain breeze. Under clean air conditions, high levels of nucleation and lower Aitken mode concentrations were measured, highlighting the importance of new particle formation as a source of particles in the absence of a significant condensation sink. During the warmer months, nucleation mode concentrations were observed to be relatively elevated both under polluted and clean conditions due to increased photochemical reactions, with enhanced subsequent growth owing to elevated concentrations of condensable organic vapours produced from biogenic volatile organic compounds, indicating that nucleation at MSY does not exclusively occur under clean air conditions. Finally, mixing of air masses between polluted and non-polluted boundary layer air, and brief changes in the air mass being sampled gave rise to unusual particle number size distributions, with specific cases of such behaviour discussed at length.
  • Item
    Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia
    (Amsterdam [u.a.] : Elsevier, 2021) Rupakheti, Dipesh; Rupakheti, Maheswar; Yin, Xiufeng; Hofer, Julian; Rai, Mukesh; Hu, Yuling; Abdullaev, Sabur F.; Kang, Shichang
    The location of Central Asia, almost at the center of the global dust belt region, makes it susceptible for dust events. The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions (Tianshan, Hindu Kush-Karakoram-Himalayas, and Tibetan Plateau). In this study, we analyse and explain the modification in aerosols’ physical, optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010–2018 at the AERONET station in Dushanbe, Tajikistan. Aerosol episodes were classified as strong anthropogenic, strong dust and extreme dust. The mean aerosol optical depth (AOD) during these three types of events was observed a factor of ~3, 3.5 and 6.6, respectively, higher than the mean AOD for the period 2010–2018. The corresponding mean fine-mode fraction was 0.94, 0.20 and 0.16, respectively, clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events, whereas coarse-mode dust aerosol dominated during the other two types of events. This was corroborated by the relationships among various aerosol parameters (AOD vs. AE, and EAE vs. AAE, SSA and RRI). The mean aerosol radiative forcing (ARF) at the top of the atmosphere (ARFTOA), the bottom of the atmosphere (ARFBOA), and in the atmosphere (ARFATM) were −35 ± 7, −73 ± 16, and 38 ± 17 Wm−2 during strong anthropogenic events, −48 ± 12, −85 ± 24, and 37 ± 15 Wm−2 during strong dust event, and −68 ± 19, −117 ± 38, and 49 ± 21 Wm−2 during extreme dust events. Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5–1.6 K day−1 (strong anthropogenic events), 0.4–1.9 K day−1 (strong dust events) and 0.8–2.7 K day−1 (extreme dust events). The source regions of air masses to Dushanbe during the onset of such events are also identified. Our study contributes to the understanding of dust and anthropogenic aerosols, in particular the extreme events and their disproportionally high radiative impacts over Central Asia.
  • Item
    In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Schladitz, A.; Müller, T.; Kaaden, N.; Massling, A.; Kandler, K.; Ebert, M.; Weinbruch, S.; Deutscher, C.; Wiedensohler, A.
    In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10-3i at 537 nm wavelength and 1.53–3.1 × 10-3i at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is 0.96 ± 0.02 and 0.98 ± 0.01 at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is 0.89 ± 0.02 and 0.93 ± 0.01 for the same wavelengths.
  • Item
    Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area
    (Amsterdam : Elsevier, 2015) Kecorius, Simonas; Kivekäs, Niku; Kristensson, Adam; Tuch, Thomas; Covert, David S.; Birmili, Wolfram; Lihavainen, Heikki; Hyvärinen, Antti-Pekka; Martinsson, Johan; Sporre, Moa K.; Swietlicki, Erik; Wiedensohler, Alfred; Ulevicius, Vidmantas
    In this study, we evaluated 10 months data (September 2009 to June 2010) of atmospheric aerosol particle number size distribution at three atmospheric observation stations along the Baltic Sea coast: Vavihill (upwind, Sweden), Utö (upwind, Finland), and Preila (downwind, Lithuania). Differences in aerosol particle number size distributions between the upwind and downwind stations during situations of connected atmospheric flow, when the air passed each station, were used to assess the contribution of ship emissions to the aerosol number concentration (diameter interval 50–400 nm) in the Lithuanian background coastal environment. A clear increase in particle number concentration could be noticed, by a factor of 1.9 from Utö to Preila (the average total number concentration at Utö was 791 cm−3), and by a factor of 1.6 from Vavihill to Preila (the average total number concentration at Vavihill was 998 cm−3). The simultaneous measurements of absorption Ångström exponents close to unity at Preila supported our conclusion that ship emissions in the Baltic Sea contributed to the increase in particle number concentration at Preila.
  • Item
    Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn
    (Milton Park : Taylor & Francis, 2017) Wiedensohler, Alfred; Covert, David S.; Swietlicki, Erik; Aalto, Pasi; Heintzenberg, Jost; Leck, Caroline
    The International Arctic Ocean Expedition 1991 (IAOE-91) provided a platform to study the occurrence and size distributions of ultrafine particles in the marine boundary layer (MBL) during Arctic summer and autumn. Measurements of both aerosol physics, and gas/particulate chemistry were taken aboard the Swedish icebreaker Oden. Three separate submicron aerosol modes were found: an ultrafine mode (Dp < 20 nm), the Aitken mode (20 < Dp < 100 nm), and the accumulation mode (Dp > 100 nm). We evaluated correlations between ultrafine particle number concentrations and mean diameter with the entire measured physical, chemical, and meteorological data set. Multivariate statistical methods were then used to make these comparisons. A principal component (PC) analysis indicated that the observed variation in the data could be explained by the influence from several types of air masses. These were characterised by contributions from the open sea or sources from the surrounding continents and islands. A partial least square (PLS) regression of the ultrafine particle concentration was also used. These results implied that the ultrafine particles were produced above or in upper layers of the MBL and mixed downwards. There were also indications that the open sea acted as a source of the precursors for ultrafine particle production. No anti-correlation was found between the ultrafine and accumulation particle number concentrations, thus indicating that the sources were in separate air masses.
  • Item
    Significant radiative impact of volcanic aerosol in the lowermost stratosphere
    (London : Nature Publishing Group, 2015) Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A.M.; Hermann, Markus; van Velthoven, Peter F.J.; Zahn, Andreas
    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.
  • Item
    Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry
    (Hoboken, NJ : Wiley, 2016) Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, Neil M.; Dunne, E.M.; Flagan, R.C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M.P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J.N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P.M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D.R.; Curtius, J.
    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.
  • Item
    Overview of the atmospheric research program during the International Arctic Ocean Expedition of 1991 (IAOE-91) and its scientific results
    (Milton Park : Taylor & Francis, 2017) Leck, C.; Bigg, E.K.; Covert, D.S.; Heintzenberg, J.; Maenhaut, W.; Nilsson, E.D.; Wiedensohler, A.
    The broad aim of the Atmospheric program of the International Arctic Ocean Expedition (IAOE-91) was to test the hypothesis that marine biogenically produced dimethyl sulfide (DMS) gas can exert a significant global climatic control. The hypothesis states that DMS is transferred to the atmosphere and is oxidised to form airborne particles. Some of these grow large enough to act as cloud condensation nuclei (CCN) which help determine cloud droplet concentration. The latter has a strong influence on cloud albedo and hence on the radiation balance of the area affected. In summer, the central Arctic is a specially favourable region for studying the natural sulfur cycle in that the open waters surrounding the pack ice are the only significant sources of DMS and there are almost no anthropogenic particle sources. Concentrations of seawater and atmospheric DMS decreased at about the same rate during the period of measurements, (1 August to 6 October, latitudes 75°N to 90°N) spanning about three orders of magnitude. Methane sulfonate and nonsea salt sulfate in the submicrometer particles, which may be derived from atmospheric DMS, also decreased similarly, suggesting that the first part of the hypothesis under test was true. Influences on cloud droplet concentration and radiation balance could not be measured. Size-resolved aerosol chemistry showed a much lower proportion of methane sulfonate to be associated with supermicrometer particles than has been found elsewhere. Its molar ratio to nonsea salt sulfate suggested that the processes controlling the particulate chemistry do not exhibit a net temperature dependence. Elemental analysis of the aerosol also revealed the interesting possibility that debris from Siberian rivers transported on the moving ice represent a fairly widespread source of supermicrometer crustal material within the pack ice. Highly resolved measurements of aerosol number size distributions were made in the diameter range 3 nm to 500 nm. 3 distinct modal sizes were usually present, the “ultrafine”, “Aitken” and “accumulation” modes centred on 14, 45 and 170 nm diameter, respectively. The presence of ultrafine particles, implying recent production, was more frequent than has been found in lower latitude remote marine areas. Evidence suggests that they were mixed to the surface from higher levels. Sudden and often drastic changes in aerosol concentration and size distribution were surprisingly frequent in view of the relatively slowly changing meteorology of the central Arctic during the study period and the absence of strong pollution sources. They were most common in particles likely to have taken part in cloud formation (> 80 nm diameter). 2 factors appear to have been involved in these sudden changes. The 1st was the formation of vertical gradients in aerosol concentration due to interactions between particles and clouds or favoured regions for new particle production during periods of stability. The 2nd was sporadic localised breakdowns of the stability, bringing changed particle concentrations to the measurement level. Probable reasons for these sporadic mixing events were indicated by the structure of the Marine Boundary Layer (MBL) investigated with high resolution rawinsondes. Low level jets were present about 60% of the time, producing conditions conductive to turbulence and shear-induced waves. It is concluded that an even more detailed study of meteorological processes in the MBL in conjunction with more highly time-resolved measurements of gas-aerosol physics and chemistry appears to be essential in any future research aimed at studying the indirect, cloud mediated, effect of aerosol particles.
  • Item
    Tracking the Saharan Air Layer with shipborne lidar across the tropical Atlantic
    (Hoboken, NJ : Wiley, 2014) Kanitz, T.; Engelmann, R.; Heinold, B.; Baars, H.; Skupin, A.; Ansmann, A.
    Saharan dust was observed with shipborne lidar from 60° to 20°W along 14.5°N during a 1-month transatlantic cruise of the research vessel Meteor. About 4500 km off the coast of Africa, mean extinction and backscatter-related Ångström exponent of 0.1, wavelength-independent extinction-to-backscatter ratios (lidar ratios) of around 45 sr, and particle linear depolarization ratio of 20% were found for aged dust (transport time >10 days). In contrast, dust with a shorter atmospheric residence time of 2–3 days showed Ångström exponents of −0.5 (backscatter coefficient) and 0.1 (extinction coefficient), mean lidar ratios of 64 and 50 sr, and particle linear depolarization ratios of 22 and 26% at 355 and 532 nm wavelength, respectively. Traces of fire smoke were also detected in the observed dust layers. The lidar observations were complemented by Aerosol Robotic Network handheld Sun photometer measurements, which revealed a mean total atmospheric column aerosol optical thickness of 0.05 for pure marine conditions (in the absence of lofted aerosol layers) and roughly 0.9 during a strong Saharan dust outbreak. The achieved data set was compared with first Consortium for Small Scale Modeling-Multi-Scale Chemistry Aerosol Transport simulations. The simulated vertical aerosol distribution showed good agreement with the lidar observations.
  • Item
    Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Particle chemistry, shape, mixing state and complex refractive index
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Lieke, K.; Benker, N.; Emmel, C.; Küpper, M.; Müller-Ebert, D.; Ebert, M.; Scheuvens, D.; Schladitz, A.; Schütz, L.; Weinbruch, S.
    A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. The aerosol at Praia is a superposition of mineral dust, sea-salt, sulphates and soot. Particles smaller than 500 nm are mainly mineral dust, mineral dust–sulphate mixtures, sulphates and soot–sulphate mixtures. Particles larger then 2.5μm consist of mineral dust, sea-salt and few mineral dust–sulphate mixtures. A transition range exists in between. The major internal mixtures are mineral dust–sulphate and soot–sulphate. Mineral dust–sea-salt mixtures occur occasionally, mineral dust–soot mixtures were not observed. The aspect ratio was 1.3–1.4 for dry particles smaller than 500 nm and 1.6–1.7 for larger ones. Parameterizations are given for dry and humid state. Although the real part of the refractive index showed low variation (1.55–1.58 at 532 nm), a multi-modal imaginary part was detected as function of particle size, reflecting the complex composition. Soot mainly influences the absorption for wavelengths longer than the haematite absorption edge, whereas for shorter wavelengths dust is dominating. The refractive index of the aerosol depends on the source region of the mineral dust and on the presence/absence of a marine component.