Search Results

Now showing 1 - 2 of 2
  • Item
    Overview: The Baltic Earth Assessment Reports (BEAR)
    (Göttingen : Copernicus Publ., 2023) Meier, H. E. Markus; Reckermann, Marcus; Langner, Joakim; Smith, Ben; Didenkulova, Ira
    Baltic Earth is an independent research network of scientists from all Baltic Sea countries that promotes regional Earth system research. Within the framework of this network, the Baltic Earth Assessment Reports (BEARs) were produced in the period 2019-2022. These are a collection of 10 review articles summarising current knowledge on the environmental and climatic state of the Earth system in the Baltic Sea region and its changes in the past (palaeoclimate), present (historical period with instrumental observations) and prospective future (until 2100) caused by natural variability, climate change and other human activities. The division of topics among articles follows the grand challenges and selected themes of the Baltic Earth Science Plan, such as the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Each review article contains an introduction, the current state of knowledge, knowledge gaps, conclusions and key messages; the latter are the bases on which recommendations for future research are made. Based on the BEARs, Baltic Earth has published an information leaflet on climate change in the Baltic Sea as part of its outreach work, which has been published in two languages so far, and organised conferences and workshops for stakeholders, in collaboration with the Baltic Marine Environment Protection Commission (Helsinki Commission, HELCOM).
  • Item
    A climate network perspective on the intertropical convergence zone
    (Göttingen : Copernicus Publ., 2021) Wolf, Frederik; Voigt, Aiko; Donner, Reik V.
    The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change. Here we employ complex network approaches, which extract spatiotemporal variability patterns from climate data, to better understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose, we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the spatial correlation patterns of monthly surface temperature anomalies and study the zonal-mean patterns of different topological and spatial network characteristics. Specifically, we cluster the GCMs by means of the distributions of their zonal network measures utilizing hierarchical clustering. We find that in the control simulation, the distributions of the zonal network measures are able to pick up model differences in the tropical sea surface temperature (SST) contrast, the ITCZ position, and the strength of the Southern Hemisphere Hadley cell. Although we do not find evidence for consistent modifications in the network structure tracing the response of the ITCZ to global warming in the considered model ensemble, our analysis demonstrates that coherent variations of the global SST field are linked to ITCZ dynamics. This suggests that climate networks can provide a new perspective on ITCZ dynamics and model differences therein.