Search Results

Now showing 1 - 5 of 5
  • Item
    Structure, variability and persistence of the submicrometre marine aerosol
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Birmili, Wolfram; Wiedensohler, Alfred; Nowak, Andreas; Tuch, Thomas
    Submicrometre dry number size distributions from four marine and one continental aerosol experiment were evaluatedjointly in the present study. In the marine experiments only data with back trajectories of at least 120 h without landcontact were used to minimize continental contamination. Log-normal functions were fitted to the size distributions.Basic statistics of the marine aerosol indicate a closed character of the size distribution at the lower size limit as opposedto an open character for corresponding continental data. Together with the infrequent occurrences of marine particlesbelow20 nmthis finding supports hypotheses and model results suggesting lowprobabilities of homogeneous nucleationin the marine boundary layer. The variability of submicrometre marine number concentrations was parametrized witha bimodal log-normal function that quantifies the probability of finding different number concentrations about a givenmedian value. Together with a four-modal log-normal approximation of the submicrometre marine size distributionitself, this model allows a statistical representation of the marine aerosol that facilitates comparison of experiments andvalidation of aerosol models. Autocorrelation at the one fixed marine site with a minimum of interruptions in timesseriesrevealed a strong size dependency of persistence in particle number concentration with the shortest persistenceat the smallest sizes. Interestingly, in the marine aerosol (at Cape Grim) persistence exhibits a size dependency thatlargely matches the modes in dg0, i.e. near the most frequent geometric mean diameters number concentrations aremost persistent. Over the continent, persistence of particle numbers is strongly constrained by diurnal meteorologicalprocesses and aerosol dynamics. Thus, no strong modal structure appears in the size-dependent persistence at Melpitz.As with the aerosol variability, marine aerosol processes in models of aerosol dynamics can be tested with these findings.
  • Item
    In situ aerosol characterization at Cape Verde, Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties
    (Milton Park : Taylor & Francis, 2017) Schladitz, Alexander; Müller, Thomas; Nordmann, Stephan; Tesche, Matthias; Silke Groß, Silke Groß; Freudenthaler, Volker; Gasteiger, Josef; Wiedensohler, Alfred
    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dustwere derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300–950 nm) and dry dust volume fractions (0–1), aerosol optical properties as a function of relative humidity (RH = 0–90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04.
  • Item
    Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Tesche, Matthias; Freudenthaler, Volker; Toledano, Carlos; Wiegner, Matthias; Ansmann, Albert; Althausen, Dietrich; Seefeldner, Meinhard
    The particle linear depolarization ratio δp of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols from southern West Africa and Saharan dust was determined at three wavelengths with three lidar systems during the SAharan Mineral dUst experiMent 2 at the airport of Praia, Cape Verde, between 22 January and 9 February 2008. The lidar ratio Sp of these major types of tropospheric aerosols was analysed at two wavelengths. For Saharan dust, we find wavelength dependent mean particle linear depolarization ratios δp of 0.24–0.27 at 355 nm, 0.29–0.31 at 532 nm and 0.36–0.40 at 710 nm, and wavelength independent mean lidar ratios Sp of 48–70 sr. Mixtures of biomass-burning aerosols and dust show wavelength independent values of δp and Sp between 0.12–0.23 and 57–98 sr, respectively. The mean values of marine aerosols range independent of wavelength for δp from 0.01 to 0.03 and for Sp from 14 to 24 sr.
  • Item
    An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN)
    (Milton Park : Taylor & Francis, 2016) Russell, Philip B.; Heintzenberg, Jost
    As 1 of 6 focused ACE-2 activities, a clear sky column closure experiment (CLEARCOLUMN) took place in June/July 1997 at the southwest corner of Portugal, in the Canary Islands, and over the eastern Atlantic Ocean surrounding and linking those sites. Overdetermined sets of volumetric, vertical profile and columnar aerosol data were taken from the sea surface to~5 km asl by samplers and sensors at land sites (20–3570 m asl), on a ship, and on 4 aircraft. In addition, 5 satellites measured upwelling radiances used to derive properties of the aerosol column. Measurements were made in a wide range of conditions and locations (e.g., the marine boundary layer with and without continental pollution, the free troposphere with and without African dust). Numerous tests of local and column closure, using unidisciplinary and multidisciplinary approaches, were conducted. This paper summarizes the methodological approach, the experiment sites and platforms, the types of measurements made on each, the types of analyses conducted, and selected key results, as a guide to the more complete results presented in other papers in this special issue and elsewhere. Example results include determinations of aerosol single scattering albedo by several techniques, measurements of hygroscopic effects on particle light scattering and size, and a wide range in the degree of agreement found in closure tests. In general, the smallest discrepancies were found in comparisons among (1) different techniques to measure an optical property of the ambient, unperturbed aerosol (e.g., optical depth, extinction, or backscatter by sunphotometer, lidar, and/or satellite) or (2) different techniques to measure an aerosol that had passed through a common sampling process (e.g., nephelometer and size spectrometer measurements with the same or similar inlets, humidities and temperatures). Typically, larger discrepancies were found between techniques that measure the ambient, unperturbed aerosol and those that must reconstruct the ambient aerosol by accounting for (a) processes that occur during sampling (e.g., aerodynamic selection, evaporation of water and other volatile material) or ( b) calibrations that depend on aerosol characteristics (e.g., sizedependent density or refractive index). A primary reason for the discrepancies in such cases is the lack of validated hygroscopic growth models covering the necessary range of particle sizes and compositions. Other common reasons include (1) using analysis or retrieval techniques that assume aerosol properties (e.g., density, single scattering albedo, shape) that do not apply in all cases and (2) using surface measurements to estimate column properties. Taken together, the ACE-2 CLEARCOLUMN data set provides a large collection of new information on the properties of the aerosol over the northeast Atlantic Ocean. CLEARCOLUMN studies have also pointed to improved techniques for analyzing current and future data sets (including satellite data sets) which will provide a more accurate and comprehensive description of the Atlantic–European–African aerosol. Thus they set the stage for an improved regional quantification of radiative forcing by anthropogenic aerosols.
  • Item
    Size distribution and chemical composition of marine aerosols: A compilation and review
    (Milton Park : Taylor & Francis, 2016) Heintzenberg, J.; Covert, D.C.; Van Dingenen, R.
    Some 30 years of physical and chemical marine aerosol data are reviewed to derive global-size distribution parameters and inorganic particle composition on a coarse 15°×15° grid. There are large gaps in geographical and seasonal coverage and chemical and physical aerosol characterisation. About 28% of the grid cells contain physical data while there are compositional data in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicrometer log-normal distributions. The sparseness of the data did not allow zonal differentiation of the distributions. By segregating the chemical data according to the major aerosol sources, sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic sources, much information on mass concentrations and contribution of natural and anthropogenic sources to the marine aerosol can be gleaned from the data base. There are significant meridional differences in the contributions of the different sources to the marine aerosol. Very clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic sulfur. Only in the case of sulfur components did the coverage allow the presentation of very coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the oceans. As an example of the potential value in comparing the marine aerosol data base to chemical transport models, global seasonal meridional MSA distributions were compared to modelled MSA distributions. The general good agreement in mass concentrations is encouraging while some latitudinal discrepancies warrant further investigations covering other aerosol components such as black carbon and metals.