Search Results

Now showing 1 - 5 of 5
  • Item
    Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data
    (Oxford : Oxford Univ. Press, 2019) Wagner, F.M.; Mollaret, C.; Günther, T.; Kemna, A.; Hauck, C.
    Quantitative estimation of pore fractions filled with liquid water, ice and air is crucial for a process-based understanding of permafrost and its hazard potential upon climate-induced degradation. Geophysical methods offer opportunities to image distributions of permafrost constituents in a non-invasive manner. We present a method to jointly estimate the volumetric fractions of liquid water, ice, air and the rock matrix from seismic refraction and electrical resistivity data. Existing approaches rely on conventional inversions of both data sets and a suitable a priori estimate of the porosity distribution to transform velocity and resistivity models into estimates for the four-phase system, often leading to non-physical results. Based on two synthetic experiments and a field data set from an Alpine permafrost site (Schilthorn, Bernese Alps and Switzerland), it is demonstrated that the developed petrophysical joint inversion provides physically plausible solutions, even in the absence of prior porosity estimates. An assessment of the model covariance matrix for the coupled inverse problem reveals remaining petrophysical ambiguities, in particular between ice and rock matrix. Incorporation of petrophysical a priori information is demonstrated by penalizing ice occurrence within the first two meters of the subsurface where the measured borehole temperatures are positive. Joint inversion of the field data set reveals a shallow air-rich layer with high porosity on top of a lower-porosity subsurface with laterally varying ice and liquid water contents. Non-physical values (e.g. negative saturations) do not occur and estimated ice saturations of 0–50 per cent as well as liquid water saturations of 15–75 per cent are in agreement with the relatively warm borehole temperatures between −0.5  and 3 ° C. The presented method helps to improve quantification of water, ice and air from geophysical observations.
  • Item
    Towards an open-source landscape for 3-D CSEM modelling
    (Oxford : Oxford Univ. Press, 2021) Werthmüller, Dieter; Rochlitz, Raphael; Castillo-Reyes, Octavio; Heagy, Lindsey
    Large-scale modelling of 3-D controlled-source electromagnetic (CSEM) surveys used to be feasible only for large companies and research consortia. This has changed over the last few years, and today there exists a selection of different open-source codes available to everyone. Using four different codes in the Python ecosystem, we perform simulations for increasingly complex models in a shallow marine setting. We first verify the computed fields with semi-analytical solutions for a simple layered model. Then we validate the responses of a more complex block model by comparing results obtained from each code. Finally, we compare the responses of a real-world model with results from the industry. On the one hand, these validations show that the open-source codes are able to compute comparable CSEM responses for challenging, large-scale models. On the other hand, they show many general and method-dependent problems that need to be faced for obtaining accurate results. Our comparison includes finite-element and finite-volume codes using structured rectilinear and octree meshes as well as unstructured tetrahedral meshes. Accurate responses can be obtained independently of the chosen method and the chosen mesh type. The runtime and memory requirements vary greatly based on the choice of iterative or direct solvers. However, we have found that much more time was spent on designing the mesh and setting up the simulations than running the actual computation. The challenging task is, irrespective of the chosen code, to appropriately discretize the model. We provide three models, each with their corresponding discretization and responses of four codes, which can be used for validation of new and existing codes. The collaboration of four code maintainers trying to achieve the same task brought in the end all four codes a significant step further. This includes improved meshing and interpolation capabilities, resulting in shorter runtimes for the same accuracy. We hope that these results may be useful for the CSEM community at large and that we can build over time a suite of benchmarks that will help to increase the confidence in existing and new 3-D CSEM codes.
  • Item
    Ground instability of sinkhole areas indicated by elastic moduli and seismic attributes
    (Oxford : Oxford Univ. Press, 2020) Wadas, S.H.; Tschache, S.; Polom, U.; Krawczyk, C.M.
    Elastic moduli derived from vertical seismic profiles (VSPs) and 2-D SH-wave reflection seismic profiles are used to characterize mechanical properties of rocks in sinkhole areas. VP and VS were used to calculate the Poisson's ratio and the dynamic shear modulus. The study shows that 2-D shear wave reflection seismics is suited to depict the heterogeneities of the subsurface induced by subsurface erosion. Low shear wave velocities of ca. 120-350 m s-1 and low shear strength values between 25 and 250 MPa are identified for the subsurface erosion horizon that consists of soluble Permian evapourites and the disturbed overlying deposits. These low values are a result of cavities and fractures induced by dissolution, creating unstable zones. In compliance with the shear modulus the Poisson's ratio derived from the VSPs shows values of 0.38-0.48 for both the presumed subsurface erosion horizon, and the deposits above. This is a further indicator of reduced underground stability. In the VSPs, anomalies of the shear modulus and the Poisson's ratio correlate with low electrical resistivities of less than 10 ωm from borehole logs, indicating high conductivity due to fluid content. Further investigation reveals a conversion of S-to-P wave for the subsurface erosion horizon, which is probably the result of dipping layers and an oriented fracture network. Seismic attribute analysis of the 2-D sections shows strong attenuation of high frequencies and low similarity of adjacent traces, which correlate with the degree of subsurface erosion induced wave disturbance of the underground. © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society.
  • Item
    Utilizing pre-polarization to enhance SNMR signals - Effect of imperfect switch-off
    (Oxford : Oxford Univ. Press, 2020) Hiller, Thomas; Dlugosch, Raphael; Müller-Petke, Mike
    Surface nuclear magnetic resonance (SNMR) is a well-established technique for the hydrogeological characterization of the subsurface up to depths of about 150 m. Recently, SNMR has been adapted to investigate also the shallow unsaturated zone with small surface loop setups. Due to the decreased volume, a pre-polarization (PP) field prior to the classical spin excitation is applied to enhance the measured response signal. Depending on the strength and orientation of the applied PP-field, the enhancement can often reach several orders of magnitude in the vicinity of the PP-loop. The theoretically achievable enhancement depends on the assumption of an adiabatic, that is perfect, switch-off of the corresponding PP-field. To study the effect of imperfect switch-off, we incorporate full spin dynamics simulations into the SNMR forward modelling. The affected subsurface volume strongly depends on the chosen PP switch-off ramp and the geometry of the loop setup. Due to the imperfect switch-off, the resulting SNMR sounding curves can have significantly decreased signal amplitudes. For comparison, the signal amplitudes of either a 1 ms exponential or linear switch-off ramp are reduced by 17 and 65 per cent, respectively. Disregarding this effect would therefore yield an underestimation of the corresponding subsurface water content of similar magnitude. © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society.
  • Item
    New archaeomagnetic secular variation data from Central Europe. I: Directions
    (Oxford : Oxford Univ. Press, 2020) Schnepp, Elisabeth; Thallner, Daniele; Arneitz, Patrick; Mauritsch, Hermann; Scholger, Robert; Rolf, Christian; Leonhardt, Roman
    Archaeomagnetic directions of 141 archaeological structures have been studied from 21 sites in Austria, 31 sites in Germany and one site in Switzerland. Characteristic remanent magnetization directions obtained from alternating field and thermal demagnetizations provided 82 and 78 new or updated (12 and 10 per cent) directions of Austria and Germany, respectively. Nine of the directions are not reliable for certain reasons (e.g. displacement) while three of the features are not well dated. Apart from this some updated age information for the published databases is provided. Rock magnetic experiments revealed magnetite as main magnetic carrier of the remanences. The new data agree well with existing secular variation reference curves. The extended data set covers now the past 3500 yr and a lot of progress were made to cover times BC with data. Here enhanced secular variation is observed manifested in declinations with values up to 70°. The new data will allow for recalculation of archaeomagnetic calibration curves for Central Europe from mid Bronze Age until today. © 2019 The Author(s). Published by Oxford University Press on behalf of The Royal Astronomical Society.