Search Results

Now showing 1 - 3 of 3
  • Item
    Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
    (Munich : EGU, 2015) Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
  • Item
    Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography
    (Munich : EGU, 2013) Beff, L.; Günther, T.; Vandoorne, B.; Couvreur, V.; Javaux, M.
    A good understanding of the soil water content (SWC) distribution at the field scale is essential to improve the management of water, soil and crops. Recent studies proved that Electrical Resistivity Tomography (ERT) opens interesting perspectives in the determination of the SWC distribution in 3 dimensions (3-D). This study was conducted (i) to check and validate how ERT is able to monitor SWC distribution in a maize field during the late growing season; and (ii) to investigate how maize plants and rainfall affect the dynamics of SWC distribution. Time Domain Reflectometry (TDR) measurements were used to validate ERT-inverted SWC values. Evolution of water mass balance was also calculated to check whether ERT was capable of giving a reliable estimate of soil water stock evolution. It is observed that ERT was able to give the same average SWC as TDR (R2 = 0.98). In addition, ERT gives better estimates of the water stock than TDR thanks to its higher spatial resolution. The high resolution of ERT measurements also allows for the discrimination of SWC heterogeneities. The SWC distribution showed that alternation of maize rows and inter-rows was the main influencing factor of the SWC distribution. The drying patterns were linked to the root profiles, with drier zones under the maize rows. During short periods, with negligible rainfall, the SWC decrease took place mainly in the two upper soil horizons and in the inter-row area. In contrast, rainfall increased the SWC mostly under the maize rows and in the upper soil layer. Nevertheless, the total amount of rainfall during the growing season was not sufficient to modify the SWC patterns induced by the maize rows. During the experimental time, there was hardly any SWC redistribution from maize rows to inter-rows. Yet, lateral redistribution from inter-rows to maize rows induced by potential gradient generates SWC decrease in the inter-row area and in the deeper soil horizons.
  • Item
    Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems
    (Hoboken, NJ : Wiley, 2012) Garré, S.; Günther, T.; Diels, J.; Vanderborght, J.
    Contour hedgerow intercropping systems have been proposed as an alternative to traditional agricultural practice with a single crop, as they are effective in reducing run-off and soil erosion. However, competition for water and nutrients between crops and associated hedgerows may reduce the overall performance of these systems. To get a more detailed understanding of the competition for water, spatially resolved monitoring of soil water contents in the soil-plant-atmosphere system is necessary. Electrical resistivity tomography (ERT) is potentially a valuable technique to monitor changes in soil moisture in space and time. In this study, the performance of different ERT electrode arrays to detect the soil moisture dynamics in a mono- and an intercropping system was tested. Their performance was analyzed based on a synthetic study using geophysical measures, such as data recovery and resolution, and using spatial statistics of retrieved water content, such as an adjusted coefficient of variation and semivariances. The synthetic ERT measurements detected differences between the cropping systems and retrieved spatial structure of the soil moisture distribution, but the variance and semivariance were underestimated. Sharp water content contrasts between horizons or in the neighborhood of a root water uptake bulb were smoothened. The addition of electrodes deeper in the soil improved the performance, but sometimes only marginally. ERT is therefore a valuable tool for soil moisture monitoring in the field under different cropping systems if an electrode array is used which can resolve the patterns expected to be present in the medium. The use of spatial statistics allowed to not only identify the overall model recovery, but also to quantify the recovery of spatial structures.