Search Results

Now showing 1 - 10 of 787
Loading...
Thumbnail Image
Item

Modelling Ag-particle activation and growth in a TSI WCPC model 3785

2010, Stratmann, F., Herrmann, E., Petäjä, T., Kulmala, M.

In this work, we modelled activation and growth of silver particles in the water-operated TSI model 3785 water condensation particle counter (WCPC). Our objective was to investigate theoretically how various effects influence the counting efficiency of this CPC. Coupled fluid and particle dynamic processes were modelled with the computational fluid dynamics (CFD) code FLUENT in combination with the Fine Particle Model (FPM) to obtain profiles of temperature, vapour concentration, nucleation rate, and particle size. We found that the counting efficiency of the TSI 3785 for small particles might be affected by the presence of larger particles. Moreover, homogeneous nucleation processes can significantly influence counting efficiency.

Loading...
Thumbnail Image
Item

The Ice Selective Inlet: A novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

2015, Kupiszewski, P., Weingartner, E., Vochezer, P., Schnaiter, M., Bigi, A., Gysel, M., Rosati, B., Toprak, E., Mertes, S., Baltensperger, U.

Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol–cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 – two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a proof of concept of the inlet design. In this work we present the setup of the ISI, including the modelling and laboratory characterization of its components, as well as field measurements demonstrating the ISI performance and validating the working principle of the inlet. Finally, measurements of biological aerosol during a Saharan dust event (SDE) are presented, showing a first indication of enrichment of bio-material in sub-2 μm ice residuals.

Loading...
Thumbnail Image
Item

Ice nucleation efficiency of AgI: review and new insights

2016, Marcolli, Claudia, Nagare, Baban, Welti, André, Lohmann, Ulrike

AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI–AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

Loading...
Thumbnail Image
Item

Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010

2016, Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., Borrmann, S.

Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm were analysed by online single particle aerosol mass spectrometry during the 6-week study Hill Cap Cloud Thuringia (HCCT)-2010 in September–October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in central Germany. More than 160 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 13 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters having a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues, the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while, in general, organic particles were less abundant in the cloud residues. In the case of amines, this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulfate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulfate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of the particles' ability to act as cloud condensation nuclei after their cloud passage.

Loading...
Thumbnail Image
Item

Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere

2007, Spracklen, D.V., Pringle, K.J., Carslaw, K.S., Mann, G.W., Manktelow, P., Heintzenberg, J.

A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the marine boundary layer (MBL). Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic MBL aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles (at the emission size and quantity assumed here) do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the observed and modelled particle persistence at Cape Grim in the Southern Ocean, does not reveal a diurnal cycle consistent with a photochemically driven local particle source. We also show that a physically based cloud drop activation scheme better explains the observed change in accumulation mode geometric mean diameter with particle number.

Loading...
Thumbnail Image
Item

PeakTree: A framework for structure-preserving radar Doppler spectra analysis

2019, Radenz, M., Bühl, J., Seifert, P., Griesche, H., Engelmann, R.

Clouds are frequently composed of more than one particle population even at the smallest scales. Cloud radar observations frequently contain information on multiple particle species in the observation volume when there are distinct peaks in the Doppler spectrum. Multi-peaked situations are not taken into account by established algorithms, which only use moments of the Doppler spectrum. In this study, we propose a new algorithm that recursively represents the subpeaks as nodes in a binary tree. Using this tree data structure to represent the peaks of a Doppler spectrum, it is possible to drop all a priori assumptions on the number and arrangement of subpeaks. The approach is rigid, unambiguous and can provide a basis for advanced analysis methods. The applicability is briefly demonstrated in two case studies, in which the tree structure was used to investigate particle populations in Arctic multilayered mixed-phase clouds, which were observed during the research vessel Polarstern expedition PS106 and the Atmospheric Radiation Measurement Program BAECC campaign.

Loading...
Thumbnail Image
Item

Clouds and aerosols in Puerto Rico – a new evaluation

2008, Allan, J.D., Baumgardner, D., Raga, G.B., Mayol-Bracero, O.L., Morales-García, F., García-García, F., Montero-Martínez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G.P., Krämer, M.

The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm−3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m−3 when the winds shifted from the ENE to ESE. Larger numbers of interstitial particles were recorded, most notably at sizes greater than 100 nm, which were absent during clean conditions. The average size of the residual particles and concentrations of cloudwater nitrate, sulphate and insoluble material increased during polluted conditions. Previous studies in Puerto Rico had reported the presence of a significant non-anthropogenic organic fraction in the aerosols measured and concluded that this was a factor controlling the in situ cloud properties. However, this was not observed in our case. In contrast to the 1.00±0.14 μg m−3 of organic carbon measured in 1992 and 1995, the organic matter measured in the current study of 0.17±0.35 μg m−3 is many times lower, most of which can be attributed to anthropogenic sources. During clean conditions, the submicron aerosol was observed to be almost entirely inorganic, an observation supported by the hygroscopicity measurements. This suggests that organic aerosols from marine sources may not be completely ubiquitous (either spatially or temporally) in this environment and requires further investigation to quantify their true extent and implications, with more extensive, longer-term sampling in conjunction with wind field analyses.

Loading...
Thumbnail Image
Item

Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust

2013, Wagner, J., Ansmann, A., Wandinger, U., Seifert, P., Schwarz, A., Tesche, M., Chaikovsky, A., Dubovik, O.

The Lidar/Radiometer Inversion Code (LIRIC) combines the multiwavelength lidar technique with sun/sky photometry and allows us to retrieve vertical profiles of particle optical and microphysical properties separately for fine-mode and coarse-mode particles. After a brief presentation of the theoretical background, we evaluate the potential of LIRIC to retrieve the optical and microphysical properties of irregularly shaped dust particles. The method is applied to two very different aerosol scenarios: a strong Saharan dust outbreak towards central Europe and an Eyjafjallajökull volcanic dust event. LIRIC profiles of particle mass concentrations for the coarse-mode as well as for the non-spherical particle fraction are compared with results for the non-spherical particle fraction as obtained with the polarization-lidar-based POLIPHON method. Similar comparisons for fine-mode and spherical particle fractions are presented also. Acceptable agreement between the different dust mass concentration profiles is obtained. LIRIC profiles of optical properties such as particle backscatter coefficient, lidar ratio, Ångström exponent, and particle depolarization ratio are compared with direct Raman lidar observations. Systematic deviations between the LIRIC retrieval products and the Raman lidar measurements of the desert dust lidar ratio, depolarization ratio, and spectral dependencies of particle backscatter and lidar ratio point to the applied spheroidal-particle model as main source for these uncertainties in the LIRIC results.

Loading...
Thumbnail Image
Item

Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

2016, Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., Formenti, P.

This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational data set necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin and understanding their atmospheric transport at global scale.

Loading...
Thumbnail Image
Item

Investigating African trace gas sources, vertical transport, and oxidation using IAGOS-CARIBIC measurements between Germany and South Africa between 2009 and 2011

2017, Thorenz, U.R., Baker, A.K., Leedham Elvidge, E.C., Sauvage, C., Riede, H., van Velthoven, P.F.J., Hermann, M., Weigelt, A., Oram, D.E., Brenninkmeijer, C.A.M., Zahn, A., Williams, J.

Between March 2009 and March 2011 a commercial airliner equipped with a custom built measurement container (IAGOS-CARIBIC observatory) conducted 13 flights between South Africa and Germany at 10–12 km altitude, traversing the African continent north-south. In-situ measurements of trace gases (CO, CH4, H2O) and aerosol particles indicated that strong surface sources (like biomass burning) and rapid vertical transport combine to generate maximum concentrations in the latitudinal range between 10°N and 10°S coincident with the inter-tropical convergence zone (ITCZ). Pressurized air samples collected during these flights were subsequently analyzed for a suite of trace gases including C2-C8 non-methane hydrocarbons (NMHC) and halocarbons. These shorter-lived trace gases, originating from both natural and anthropogenic sources, also showed near equatorial maxima highlighting the effectiveness of convective transport in this region. Two source apportionment methods were used to investigate the specific sources of NMHC: positive matrix factorization (PMF), which is used for the first time for NMHC analysis in the upper troposphere (UT), and enhancement ratios to CO. Using the PMF method three characteristic airmass types were identified based on the different trace gas concentrations they obtained: biomass burning, fossil fuel emissions, and “background” air. The first two sources were defined with reference to previously reported surface source characterizations, while the term “background” was given to air masses in which the concentration ratios approached that of the lifetime ratios. Comparison of enhancement ratios between NMHC and CO for the subset of air samples that had experienced recent contact with the planetary boundary layer (PBL) to literature values showed that the burning of savanna and tropical forest is likely the main source of NMHC in the African upper troposphere (10–12 km). Photochemical aging patterns for the samples with PBL contact revealed that the air had different degradation histories depending on the hemisphere in which they were emitted. In the southern hemisphere (SH) air masses experienced more dilution by clean background air whereas in the northern hemisphere (NH) air masses are less diluted or mixed with background air still containing longer lived NMHC. Using NMHC photochemical clocks ozone production was seen in the BB outflow above Africa in the NH.