Search Results

Now showing 1 - 10 of 83
  • Item
    Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch
    (Hoboken, NJ : Wiley, 2020) Casanueva, Ana; Herrera, Sixto; Iturbide, Maialen; Lange, Stefan; Jury, Martin; Dosio, Alessandro; Maraun, Douglas; Gutiérrez, José M.
    Systematic biases in climate models hamper their direct use in impact studies and, as a consequence, many statistical bias adjustment methods have been developed to calibrate model outputs against observations. The application of these methods in a climate change context is problematic since there is no clear understanding on how these methods may affect key magnitudes, for example, the climate change signal or trend, under different sources of uncertainty. Two relevant sources of uncertainty, often overlooked, are the sensitivity to the observational reference used to calibrate the method and the effect of the resolution mismatch between model and observations (downscaling effect). In the present work, we assess the impact of these factors on the climate change signal of temperature and precipitation considering marginal, temporal and extreme aspects. We use eight standard and state-of-the-art bias adjustment methods (spanning a variety of methods regarding their nature—empirical or parametric—, fitted parameters and trend-preservation) for a case study in the Iberian Peninsula. The quantile trend-preserving methods (namely quantile delta mapping (QDM), scaled distribution mapping (SDM) and the method from the third phase of ISIMIP-ISIMIP3) preserve better the raw signals for the different indices and variables considered (not all preserved by construction). However, they rely largely on the reference dataset used for calibration, thus presenting a larger sensitivity to the observations, especially for precipitation intensity, spells and extreme indices. Thus, high-quality observational datasets are essential for comprehensive analyses in larger (continental) domains. Similar conclusions hold for experiments carried out at high (approximately 20 km) and low (approximately 120 km) spatial resolutions. © 2020 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
  • Item
    Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm?
    (Hoboken, NJ : Wiley, 2019) Wang, Simon S.-Y.; Kim, Hyungjun; Coumou, Dim; Yoon, Jin-Ho; Zhao, Lin; Gillies, Robert R.
    [No abstract available]
  • Item
    Dual-FOV Raman and Doppler lidar studies of aerosol-cloud interactions: Simultaneous profiling of aerosols, warm-cloud properties, and vertical wind
    (Hoboken, NJ : Wiley, 2014) Schmidt, Jörg; Ansmann, Albert; Bühl, Johannes; Baars, Holger; Wandinger, Ulla; Müller, Detlef; Malinka, Aleksey V.
    For the first time, colocated dual-field of view (dual-FOV) Raman lidar and Doppler lidar observations (case studies) of aerosol and cloud optical and microphysical properties below and within thin layered liquid water clouds are presented together with an updraft and downdraft characterization at cloud base. The goal of this work is to investigate the relationship between aerosol load close to cloud base and cloud characteristics of warm (purely liquid) clouds and the study of the influence of vertical motions and turbulent mixing on this relationship. We further use this opportunity to illustrate the applicability of the novel dual-FOV Raman lidar in this field of research. The dual-FOV lidar combines the well-established multiwavelength Raman lidar technique for aerosol retrievals and the multiple-scattering Raman lidar technique for profiling of the single-scattering extinction coefficient, effective radius, number concentration of the cloud droplets, and liquid water content. Key findings of our 3 year observations are presented in several case studies of optically thin altocumulus layers occurring in the lower free troposphere between 2.5 and 4 km height over Leipzig, Germany, during clean and polluted situations. For the clouds that we observed, the most direct link between aerosol proxy (particle extinction coefficient) and cloud proxy (cloud droplet number concentration) was found at cloud base during updraft periods. Above cloud base, additional processes resulting from turbulent mixing and entrainment of dry air make it difficult to determine the direct impact of aerosols on cloud processes.
  • Item
    A global atmospheric model of meteoric iron
    (Hoboken, NJ : Wiley, 2013) Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Höffner, Josef; Yi, Fan; Plane, John M.C.
    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.
  • Item
    Causes and importance of new particle formation in the present-day and preindustrial atmospheres
    (Hoboken, NJ : Wiley, 2017) Gordon, Hamish; Kirkby, Jasper; Baltensperger, Urs; Bianchi, Federico; Breitenlechner, Martin; Curtius, Joachim; Dias, Antonio; Dommen, Josef; Donahue, Neil M.; Dunne, Eimear M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Frege, Carla; Fuchs, Claudia; Hansel, Armin; Hoyle, Christopher R.; Kulmala, Markku; Kürten, Andreas; Lehtipalo, Katrianne; Makhmutov, Vladimir; Molteni, Ugo; Rissanen, Matti P.; Stozkhov, Yuri; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Robert; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Yan, Chao; Carslaw, Ken S.
    New particle formation has been estimated to produce around half of cloud-forming particles in the present-day atmosphere, via gas-to-particle conversion. Here we assess the importance of new particle formation (NPF) for both the present-day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low-cloud-level CCN concentrations at 0.2% supersaturation by 26% in the present-day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion-induced NPF, compared with 27% in the present day, although we caution that the ion-induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions.
  • Item
    Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site
    (Hoboken, NJ : Wiley, 2016) Kupiszewski, Piotr; Zanatta, Marco; Mertes, Stephan; Vochezer, Paul; Lloyd, Gary; Schneider, Johannes; Schenk, Ludwig; Schnaiter, Martin; Baltensperger, Urs; Weingartner, Ernest; Gysel, Martin
    Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10−4 to 10−3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.
  • Item
    Radiative effect of aerosols above the northern and southern Atlantic Ocean as determined from shipborne lidar observations
    (Hoboken, NJ : Wiley, 2013) Kanitz, T.; Ansmann, Albert; Seifert, P.; Engelmann, R.; Althausen, D.
    The direct solar radiative effect of aerosols over the Atlantic Ocean was investigated on the basis of aerosol Raman/polarization lidar observations aboard the research vessel Polarsternbetween Germany (50°N) and either South America (50°S) or South Africa (40°S) in 2009 and 2010. First, a case study of complex aerosol conditions with marine aerosol, dust, and smoke particles in the boundary layer and free troposphere is presented to demonstrate that detailed knowledge of aerosol layering (boundary layer, free troposphere) and aerosol mixing state is required for an accurate determination of the resulting radiative effects. A statistical analysis based on all lidar observations revealed the highest daily mean radiative effect (−43±59 W m−2at the surface, −14±18 W m−2at top of atmosphere) in the latitudinal belt from 0°N–15°N in the Saharan dust outflow region. Mean aerosol radiative effects of the polluted northern and clean southern midlatitudes were contrasted. In the northern midlatitudes, the averaged aerosol radiative effect of all simulations was −24±33 W m−2at the surface which is a factor of 1.6 higher than at similar southern hemispheric latitudes. The simulations based on the lidar observations are in good agreement with colocated pyranometer measurements.
  • Item
    Long‐Term Changes in the Northern Midwinter Middle Atmosphere in Relation to the Quasi‐Biennial Oscillation
    (Hoboken, NJ : Wiley, 2019) Gabriel, A.
    Long-term changes in the middle atmosphere due to anthropogenic greenhouse gas emissions are examined in relation to the effect of the equatorial Quasi-Biennial Oscillation (QBO) on the northern midwinter circulation. The examinations are based on the Coupled Model Intercomparison Project Phase 5 simulations for 1979–2100 with the Earth-System-Model MPI-ESM-MR that generates the QBO internally. In particular, the three-dimensional residual circulation is used as proxy for the Brewer-Dobson circulation, revealing an increasing downwelling in the center of the polar low over Northern Europe/Siberia (~5% per decade). The changes in northern midwinter temperature, zonal wind, and residual circulation are much stronger during westerly (QBO-W) than easterly (QBO-E) phase of QBO (e.g., for a moderate increase in greenhouse gases, we find maximum decreases in the zonal mean westerly jet at 60°N and 3 hPa of about −14.8 ± 5.4 m/s for QBO-W but only −4.7 ± 5.2 m/s for QBO-E). This is due to a change of the extratropical QBO-W signature toward QBO-E signature while the equatorial QBO remains nearly unchanged (i.e., a change toward disappearance of the so-called Holton-Tan relationship). Similar to the current change from QBO-W to QBO-E signature, the changes during QBO-W include an increase in amplitude and eastward shift in phase of stratospheric stationary Wave 1 at the cost of Wave 2, with decreasing westerlies over North America and increasing downwelling over Siberia. The eastward shift in phase of stationary Wave 1 is related to the associated increase in meridional transport of planetary vorticity. © 2019. The Authors.
  • Item
    Characteristics of the Quiet-Time Hot Spot GravityWaves Observed by GOCE Over the Southern Andes on 5 July 2010
    (Hoboken, NJ : Wiley, 2019) Vadas, Sharon L.; Xu, Shuang; Yue, Jia; Bossert, Katrina; Becker, Erich; Baumgarten, Gerd
    We analyze quiet-time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes at z≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross-track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengths λH = 170–1,850 km, intrinsic periods τIr = 11–54 min, intrinsic horizontal phase speeds cIH = 245–630 m/s, and density perturbations (Formula presented.) 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated at z∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher-order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher-order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet-time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere. ©2019. The Authors.
  • Item
    PMC Turbo : Studying Gravity Wave and Instability Dynamics in the Summer Mesosphere Using Polar Mesospheric Cloud Imaging and Profiling From a Stratospheric Balloon
    (Hoboken, NJ : Wiley, 2019) Fritts, David C.; Miller, Amber D.; Kjellstrand, C. Bjorn; Geach, Christopher; Williams, Bifford P.; Kaifler, Bernd; Kaifler, Natalie; Jones, Glenn; Rapp, Markus; Limon, Michele; Reimuller, Jason; Wang, Ling; Hanany, Shaul; Gisinger, Sonja; Zhao, Yucheng; Stober, Gunter; Randall, Cora E.
    The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small-scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high-resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9-day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger-scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger-scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small-scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here. © 2019. The Authors.