Search Results

Now showing 1 - 3 of 3
  • Item
    Food security under high bioenergy demand toward long-term climate goals
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Hasegawa, Tomoko; Sands, Ronald D.; Brunelle, Thierry; Cui, Yiyun; Frank, Stefan; Fujimori, Shinichiro; Popp, Alexander
    Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person−1 day−1, leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production. © 2020, The Author(s).
  • Item
    Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania?
    (Heidelberg : Springer, 2017) Lana, Marcos A.; Vasconcelos, Ana Carolina F.; Gornott, Christoph; Schaffert, Angela; Bonatti, Michelle; Volk, Johanna; Graef, Frieder; Kersebaum, Kurt Christian; Sieber, Stefan
    Agriculture has the greatest potential to lift the African continent out of poverty and alleviate hunger. Among the countries in sub-Saharan Africa, Tanzania has an abundance of natural resources and major agricultural potential. However, one of the most important constraints facing Tanzania’s agricultural sector is the dependence on unreliable and irregular weather, including rainfall. A strategy to cope with climate uncertainty in semi-arid regions is to proceed with the sowing of the crop before the onset of the rainy season. The advantage is that when the rains start, seeds are already in the soil and can begin immediately the process of germination. The objective of this paper was to assess the effectiveness of dry-soil planting for maize as an adaptation strategy in the context of a changing climate in Dodoma, a semi-arid region in Tanzania. For this assessment, the DSSAT crop model was used in combination with climate scenarios based on representative concentration pathways. A probability of crop failure of more than 80% can be expected when sowing occurs during the planting window (of 21 days) starting on 1st November. The next planting window we assessed, starting on 23rd November (which was still before the onset of rain), presented significantly lower probabilities of crop failure, indicating that sowing before the onset of the rainy season is a suitable adaptation strategy. Results also indicated that, despite not reaching the highest maize grain yields, fields prepared for dry-soil planting still produced adequate yields. The cultivation of several fields using the dry planting method is a strategy farmers can use to cope with low rainfall conditions, since it increases the chances of harvesting at least some of the cultivated fields. We conclude that dry-soil planting is a feasible and valid technique, even in scenarios of climate change, in order to provide acceptable maize yields in semi-arid Tanzania.
  • Item
    Agriculture, livelihoods and climate change in the West African Sahel
    (Heidelberg : Springer Verlag, 2011) Sissoko, K.; van Keulen, H.; Verhagen, J.; Tekken, V.; Battaglini, A.
    The West African Sahel is a harsh environment stressed by a fast-growing population and increasing pressure on the scarce natural resources. Agriculture is the main source of livelihood of the majority of the people living in the area. Increases in temperature and/or modifications in rainfall quantities and distribution will substantially impact on the natural resource on which agriculture depends. The vulnerability of livelihoods based on agriculture is increased and most likely exacerbate and accelerate the current 'downward spiral' of underdevelopment, poverty and environmental degradation. Notably, droughts, a short rainy season and/or very low rainfall will be felt by current systems. To cope with the difficult climatic situation, farm households have developed a range of strategies including selling of animals and on-farm diversification or specialization. At regional level, early warning systems including an operational agro-meteorological information system already provide farmers with crucial information. Substantial political, institutional and financial efforts at national and international level are indispensable for the sustenance of millions of lives. In terms of development, priority needs to be given to adaptation and implementation of comprehensive programs on water management and irrigation, desertification control, development of alternative sources of energy and the promotion of sustainable agricultural practices by farmers.