Search Results

Now showing 1 - 2 of 2
  • Item
    Protein O-mannosylation in the murine brain: Occurrence of Mono-O-Mannosyl glycans and identification of new substrates
    (San Francisco, CA : Public Library of Science, 2016) Bartels, Markus F.; Winterhalter, Patrick R.; Yu, Jin; Liu, Yan; Lommel, Mark; Möhrlen, Frank; Hu, Huaiyu; Feizi, Ten; Westerlind, Ulrika; Ruppert, Thomas; Strahl, Sabine
    Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.
  • Item
    Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars
    (London : Nature Publishing Group, 2013) Murdin, B.N.; Li, J.; Pang, M.L.Y.; Bowyer, E.T.; Litvinenko, K.L.; Clowes, S.K.; Engelkamp, H.; Pidgeon, C.R.; Galbraith, I.; Abrosimov, N.V.; Riemann, H.; Pavlov, S.G.; Hübers, H.-W.; Murdin, P.G.
    Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10 5 T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H 2 analogues, and for investigation of He 2, a bound molecule predicted under extreme field conditions.