Search Results

Now showing 1 - 10 of 47
  • Item
    CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland
    (Basel : MDPI, 2017) Piniewski, Mikołaj; Szcześniak, Mateusz; Kardel, Ignacy
    There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.
  • Item
    Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
    (London : Springer Nature, 2022) Rammelt, Crelis F.; Gupta, Joyeeta; Liverman, Diana; Scholtens, Joeri; Ciobanu, Daniel; Abrams, Jesse F.; Bai, Xuemei; Gifford, Lauren; Gordon, Christopher; Hurlbert, Margot; Inoue, Cristina Y. A.; Jacobson, Lisa; Lade, Steven J.; Lenton, Timothy M.; McKay, David I. Armstrong; Nakicenovic, Nebojsa; Okereke, Chukwumerije; Otto, Ilona M.; Pereira, Laura M.; Prodani, Klaudia; Rockström, Johan; Stewart-Koster, Ben; Verburg, Peter H.; Zimm, Caroline
    The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  • Item
    Overview of compressed sensing: Sensing model, reconstruction algorithm, and its applications
    (Basel : MDPI, 2020) Li, Lixiang; Fang, Yuan; Liu, Liwei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian
    With the development of intelligent networks such as the Internet of Things, network scales are becoming increasingly larger, and network environments increasingly complex, which brings a great challenge to network communication. The issues of energy-saving, transmission efficiency, and security were gradually highlighted. Compressed sensing (CS) helps to simultaneously solve those three problems in the communication of intelligent networks. In CS, fewer samples are required to reconstruct sparse or compressible signals, which breaks the restrict condition of a traditional Nyquist-Shannon sampling theorem. Here, we give an overview of recent CS studies, along the issues of sensing models, reconstruction algorithms, and their applications. First, we introduce several common sensing methods for CS, like sparse dictionary sensing, block-compressed sensing, and chaotic compressed sensing. We also present several state-of-the-art reconstruction algorithms of CS, including the convex optimization, greedy, and Bayesian algorithms. Lastly, we offer recommendation for broad CS applications, such as data compression, image processing, cryptography, and the reconstruction of complex networks. We discuss works related to CS technology and some CS essentials. © 2020 by the authors.
  • Item
    Phenological model intercomparison for estimating grapevine budbreak date (Vitis vinifera L.) in Europe
    (Basel : MDPI, 2020) Leolini, Luisa; Costafreda-Aumedes, Sergi; Santos, João A.; Menz, Christoph; Fraga, Helder; Molitor, Daniel; Merante, Paolo; Junk, Jürgen; Kartschall, Thomas; Destrac-Irvine, Agnès; van Leeuwen, Cornelis; Malheiro, Aureliano C.; Eiras-Dias, José; Silvestre, José; Dibari, Camilla; Bindi, Marco; Moriondo, Marco
    Budbreak date in grapevine is strictly dependent on temperature, and the correct simulation of its occurrence is of great interest since it may have major consequences on the final yield and quality. In this study, we evaluated the reliability for budbreak simulation of two modeling approaches, the chilling-forcing (CF), which describes the entire dormancy period (endo-and eco-dormancy) and the forcing approach (F), which only describes the eco-dormancy. For this, we selected six phenological models that apply CF and F in dierent ways, which were tested on budbreak simulation of eight grapevine varieties cultivated at dierent latitudes in Europe. Although none of the compared models showed a clear supremacy over the others, models based on CF showed a generally higher estimation accuracy than F where fixed starting dates were adopted. In the latter models, the accurate simulation of budbreak was dependent on the selection of the starting date for forcing accumulation that changes according to the latitude, whereas CF models were independent. Indeed, distinct thermal requirements were found for the grapevine varieties cultivated in Northern and Southern Europe. This implies the need to improve modeling of the dormancy period to avoid under-or over-estimations of budbreak date under dierent environmental conditions. © 2020 by the authors.
  • Item
    Photodynamic opening of the blood-brain barrier using different photosensitizers in mice
    (Basel : MDPI, 2019) Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Mantareva, Vanya; Angelov, Ivan; Eneva, Ivelina; Terskov, Andrey; Mamedova, Aysel; Shirokov, Alexander; Khorovodov, Alexander; Klimova, Maria; Agranovich, Ilana; Blokhina, Inna; Lezhnev, Nikita; Kurths, Jurgen
    In a series of previous studies, we demonstrated that the photodynamic therapy (PDT), as a widely used tool for treatment of glioblastoma multiforme (GBM), also site-specifically opens the blood-brain barrier (BBB) in PDT-dose and age-related manner via reversible disorganization of the tight junction machinery. To develop the effective protocol of PDT-opening of the BBB, here we answer the question of what kind of photosensitizer (PS) is the most effective for the BBB opening. We studied the PDT-opening of the BBB in healthy mice using commercial photosensitizers (PSs) such as 5-aminolevulenic acid (5-ALA), aluminum phthalocyanine disulfonate (AlPcS), zinc phthalocyanine (ZnPc) and new synthetized PSs such as galactose functionalized ZnPc (GalZnPc). The spectrofluorimetric assay of Evans Blue albumin complex (EBAC) leakage and 3-D confocal imaging of FITC-dextran 70 kDa (FITCD) extravasation clearly shows a revisable and dose depended PDT-opening of the BBB toEBACand FITCD associated with a decrease in presence of tight junction (TJ) in the vascular endothelium. The PDT effects on the BBB permeability, TJ expression and the fluorescent signal from the brain tissues are more pronounced in PDT-GalZnPc vs. PDT-5-ALA/AlPcS/ZnPc. These pre-clinical data are the first important informative platform for an optimization of the PDT protocol in the light of new knowledge about PDT-opening of the BBB for drug brain delivery and for the therapy of brain diseases. © 2019 by the authors.
  • Item
    A review of the potential climate change impacts and adaptation options for European viticulture
    (Basel : MDPI, 2020) Santos, João A.; Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Dinis, Lia-Tânia; Correia, Carlos; Moriondo, Marco; Leolini, Luisa; Dibari, Camilla; Costafreda-Aumedes, Sergi; Kartschall, Thomas; Menz, Christoph; Molitor, Daniel; Junk, Jürgen; Beyer, Marco; Schultz, Hans R.
    Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe. © 2020 by the authors.
  • Item
    Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models
    (Amsterdam [u.a.] : Elsevier Science, 2018) Krey, Volker; Guo, Fei; Kolp, Peter; Zhou, Wenji; Schaeffer, Roberto; Awasthy, Aayushi; Bertram, Christoph; de Boer, Harmen-Sytze; Fragkos, Panagiotis; Fujimori, Shinichiro; He, Chenmin; Iyer, Gokul; Keramidas, Kimon; Köberle, Alexandre C.; Oshiro, Ken; Reis, Lara Aleluia; Shoai-Tehrani, Bianka; Vishwanathan, Saritha; Capros, Pantelis; Drouet, Laurent; Edmonds, James E.; Garg, Amit; Gernaat, David E.H.J.; Jiang, Kejun; Kannavou, Maria; Kitous, Alban; Kriegler, Elmar; Luderer, Gunnar; Mathur, Ritu; Muratori, Matteo; Sano, Fuminori; van Vuuren, Detlef P.
    Integrated assessment models are extensively used in the analysis of climate change mitigation and are informing national decision makers as well as contribute to international scientific assessments. This paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among fifteen different global and national integrated assessment models. Particular focus is given to six major economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that techno-economic characteristics are quite different across integrated assessment models, both for the base year and future years. It is, however, important to recognize that techno-economic assessments from the literature exhibit an equally large range of parameters as the integrated assessment models reviewed. Beyond numerical differences, the representation of technologies also differs among models, which needs to be taken into account when comparing numerical parameters. While desirable, it seems difficult to fully harmonize techno-economic parameters across a broader range of models due to structural differences in the representation of technology. Therefore, making techno-economic parameters available in the future, together with of the technology representation as well as the exact definitions of the parameters should become the standard approach as it allows an open discussion of appropriate assumptions. © 2019 The Authors
  • Item
    Data-Driven Discovery of Stochastic Differential Equations
    (Beijing : Engineering Sciences Press, 2022) Wang, Yasen; Fang, Huazhen; Jin, Junyang; Ma, Guijun; He, Xin; Dai, Xing; Yue, Zuogong; Cheng, Cheng; Zhang, Hai-Tao; Pu, Donglin; Wu, Dongrui; Yuan, Ye; Gonçalves, Jorge; Kurths, Jürgen; Ding, Han
    Stochastic differential equations (SDEs) are mathematical models that are widely used to describe complex processes or phenomena perturbed by random noise from different sources. The identification of SDEs governing a system is often a challenge because of the inherent strong stochasticity of data and the complexity of the system's dynamics. The practical utility of existing parametric approaches for identifying SDEs is usually limited by insufficient data resources. This study presents a novel framework for identifying SDEs by leveraging the sparse Bayesian learning (SBL) technique to search for a parsimonious, yet physically necessary representation from the space of candidate basis functions. More importantly, we use the analytical tractability of SBL to develop an efficient way to formulate the linear regression problem for the discovery of SDEs that requires considerably less time-series data. The effectiveness of the proposed framework is demonstrated using real data on stock and oil prices, bearing variation, and wind speed, as well as simulated data on well-known stochastic dynamical systems, including the generalized Wiener process and Langevin equation. This framework aims to assist specialists in extracting stochastic mathematical models from random phenomena in the natural sciences, economics, and engineering fields for analysis, prediction, and decision making.
  • Item
    Wildlife-vehicle collisions in hurungwe safari area, northern zimbabwe
    (Amsterdam [u.a.] : Elsevier, 2020) Gandiwa, Edson; Mashapa, Clayton; Muboko, Never; Chemura, Abel; Kuvaoga, Phillip; Mabika, Cheryl T.
    This study is the first to assess wildlife-vehicle collisions (WVC) in Zimbabwe. The study analysed the impact and factors that influence vehicle collisions with large wild mammals along the Harare-Chirundu road section in the protected Hurungwe Safari Area, northern Zimbabwe. Data were retrieved from the Hurungwe Safari Area records and covered the period between 2006 and 2013. Descriptive statistics were used to analyse the recorded variables across the sampled area and to show trends of the prevalence of large wild mammals roadkill over time. Using STATISTICA version 10 for Windows, a two-tailed Mann-Whitney U test was used to determine differences between the number of wild mammal animal roadkills and seasons. A total of 47 large wild mammal animals were killed between 2006 and 2013. The large wild mammal animals that died as a result of vehicle collisions constituted a total of 11 species, with the African buffalo and spotted hyena being the most hit and killed animal species. Most WVC involved heavy haulage trucks and passenger buses. There was no significance difference (P = 0.936) between number of large wild mammal animals killed from WVC between dry and wet seasons. The large wild mammal animals were mostly killed in areas near water sources. We recommend for the inclusion of wildlife protection safeguards in road infrastructure network design and development, particularly on roads that traverse across protected areas in Zimbabwe and beyond. © 2020 The Author(s)
  • Item
    Climate change and specialty coffee potential in Ethiopia
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Chemura, Abel; Mudereri, Bester Tawona; Yalew, Amsalu Woldie; Gornott, Christoph
    Current climate change impact studies on coffee have not considered impact on coffee typicities that depend on local microclimatic, topographic and soil characteristics. Thus, this study aims to provide a quantitative risk assessment of the impact of climate change on suitability of five premium specialty coffees in Ethiopia. We implement an ensemble model of three machine learning algorithms to predict current and future (2030s, 2050s, 2070s, and 2090s) suitability for each specialty coffee under four Shared Socio-economic Pathways (SSPs). Results show that the importance of variables determining coffee suitability in the combined model is different from those for specialty coffees despite the climatic factors remaining more important in determining suitability than topographic and soil variables. Our model predicts that 27% of the country is generally suitable for coffee, and of this area, only up to 30% is suitable for specialty coffees. The impact modelling showed that the combined model projects a net gain in coffee production suitability under climate change in general but losses in five out of the six modelled specialty coffee growing areas. We conclude that depending on drivers of suitability and projected impacts, climate change will significantly affect the Ethiopian speciality coffee sector and area-specific adaptation measures are required to build resilience.