Search Results

Now showing 1 - 10 of 59
Loading...
Thumbnail Image
Item

Fluorescence Microscopy of the HIV-1 Envelope

2020, Carravilla, Pablo, Nieva, José L., Eggeling, Christian

Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.

Loading...
Thumbnail Image
Item

Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles

2018, Urbančič, Iztok, Brun, Juliane, Shrestha, Dilip, Waithe, Dominic, Eggeling, Christian, Chojnacki, Jakub

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.

Loading...
Thumbnail Image
Item

Symmetries and Selection Rules of the Spectra of Photoelectrons and High-Order Harmonics Generated by Field-Driven Atoms and Molecules

2021, Habibović, Dino, Becker, Wilhelm, Milošević, Dejan B.

Using the strong-field approximation we systematically investigate the selection rules for high-order harmonic generation and the symmetry properties of the angle-resolved photoelectron spectra for various atomic and molecular targets exposed to one-component and two-component laser fields. These include bicircular fields and orthogonally polarized two-color fields. The selection rules are derived directly from the dynamical symmetries of the driving field. Alternatively, we demonstrate that they can be obtained using the conservation of the projection of the total angular momentum on the quantization axis. We discuss how the harmonic spectra of atomic targets depend on the type of the ground state or, for molecular targets, on the pertinent molecular orbital. In addition, we briefly discuss some properties of the high-order harmonic spectra generated by a few-cycle laser field. The symmetry properties of the angle-resolved photoelectron momentum distribution are also determined by the dynamical symmetry of the driving field. We consider the first two terms in a Born series expansion of the T matrix, which describe the direct and the rescattered electrons. Dynamical symmetries involving time translation generate rotational symmetries obeyed by both terms. However, those that involve time reversal generate reflection symmetries that are only observed by the direct electrons. Finally, we explain how the symmetry properties, imposed by the dynamical symmetry of the driving field, are altered for molecular targets.

Loading...
Thumbnail Image
Item

Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling

2017, Al Rawashdeh, Wa'el, Zuo, Simin, Melle, Andrea, Appold, Lia, Koletnik, Susanne, Tsvetkova, Yoanna, Beztsinna, Nataliia, Pich, Andrij, Lammers, Twan, Kiessling, Fabian, Gremse, Felix

Fluorescence-mediated tomography (FMT) is a quantitative three-dimensional imaging technique for preclinical research applications. The combination with micro-computed tomography (μCT) enables improved reconstruction and analysis. The aim of this study is to assess the potential of μCT-FMT and kinetic modeling to determine elimination and retention of typical model drugs and drug delivery systems. We selected four fluorescent probes with different but well-known biodistribution and elimination routes: Indocyanine green (ICG), hydroxyapatite-binding OsteoSense (OS), biodegradable nanogels (NG) and microbubbles (MB). μCT-FMT scans were performed in twenty BALB/c nude mice (5 per group) at 0.25, 2, 4, 8, 24, 48 and 72 h after intravenous injection. Longitudinal organ curves were determined using interactive organ segmentation software and a pharmacokinetic whole-body model was implemented and applied to compute physiological parameters describing elimination and retention. ICG demonstrated high initial hepatic uptake which decreased rapidly while intestinal accumulation appeared for around 8 hours which is in line with the known direct uptake by hepatocytes followed by hepatobiliary elimination. Complete clearance from the body was observed at 48 h. NG showed similar but slower hepatobiliary elimination because these nanoparticles require degradation before elimination can take place. OS was strongly located in the bones in addition to high signal in the bladder at 0.25 h indicating fast renal excretion. MB showed longest retention in liver and spleen and low signal in the kidneys likely caused by renal elimination or retention of fragments. Furthermore, probe retention was found in liver (MB, NG and OS), spleen (MB) and kidneys (MB and NG) at 72 h which was confirmed by ex vivo data. The kinetic model enabled robust extraction of physiological parameters from the organ curves. In summary, μCT-FMT and kinetic modeling enable differentiation of hepatobiliary and renal elimination routes and allow for the noninvasive assessment of retention sites in relevant organs including liver, kidney, bone and spleen. © Ivyspring International Publisher.

Loading...
Thumbnail Image
Item

Effects of climate change on combined labour productivity and supply: an empirical, multi-model study

2021, Dasgupta, Shouro, van Maanen, Nicole, Gosling, Simon N., Piontek, Franziska, Otto, Christian, Schleussner, Carl-Friedrich

Background: Although effects on labour is one of the most tangible and attributable climate impact, our quantification of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates of the effects of climate change on labour effectiveness. Methods: In this empirical, multi-model study, we used a large collection of micro-survey data aggregated to subnational regions across the world to estimate new, robust global and regional temperature and wet-bulb globe temperature exposure-response functions (ERFs) for labour supply. We then assessed the uncertainty in existing labour productivity response functions and derived an augmented mean function. Finally, we combined these two dimensions of labour into a single compound metric (effective labour effects). This combined measure allowed us to estimate the effect of future climate change on both the number of hours worked and on the productivity of workers during their working hours under 1·5°C, 2·0°C, and 3·0°C of global warming. We separately analysed low-exposure (indoors or outdoors in the shade) and high-exposure (outdoor in the sun) sectors. Findings: We found differentiated empirical regional and sectoral ERF's for labour supply. Current climate conditions already negatively affect labour effectiveness, particularly in tropical countries. Future climate change will reduce global total labour in the low-exposure sectors by 18 percentage points (range −48·8 to 5·3) under a scenario of 3·0°C warming (24·8 percentage points in the high-exposure sectors). The reductions will be 25·9 percentage points (–48·8 to 2·7) in Africa, 18·6 percentage points (–33·6 to 5·3) in Asia, and 10·4 percentage points (–35·0 to 2·6) in the Americas in the low-exposure sectors. These regional effects are projected to be substantially higher for labour outdoors in full sunlight compared with indoors (or outdoors in the shade) with the average reductions in total labour projected to be 32·8 percentage points (–66·3 to 1·6) in Africa, 25·0 percentage points (–66·3 to 7·0) in Asia, and 16·7 percentage points (–45·5 to 4·4) in the Americas. Interpretation: Both labour supply and productivity are projected to decrease under future climate change in most parts of the world, and particularly in tropical regions. Parts of sub-Saharan Africa, south Asia, and southeast Asia are at highest risk under future warming scenarios. The heterogeneous regional response functions suggest that it is necessary to move away from one-size-fits-all response functions to investigate the climate effect on labour. Our findings imply income and distributional consequences in terms of increased inequality and poverty, especially in low-income countries, where the labour effects are projected to be high. Funding: COST (European Cooperation in Science and Technology). © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

Loading...
Thumbnail Image
Item

Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics

2016, Hu, Dehong, Zhang, Jingnan, Gao, Guanhui, Sheng, Zonghai, Cui, Haodong, Cai, Lintao

Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.

Loading...
Thumbnail Image
Item

ROS Cocktails as an Adjuvant for Personalized Antitumor Vaccination?

2021, Clemen, Ramona, Bekeschus, Sander

Cancer is the second leading cause of death worldwide. Today, the critical role of the immune system in tumor control is undisputed. Checkpoint antibody immunotherapy augments existing antitumor T cell activity with durable clinical responses in many tumor entities. Despite the presence of tumor-associated antigens and neoantigens, many patients have an insufficient repertoires of antitumor T cells. Autologous tumor vaccinations aim at alleviating this defect, but clinical success is modest. Loading tumor material into autologous dendritic cells followed by their laboratory expansion and therapeutic vaccination is promising, both conceptually and clinically. However, this process is laborious, time-consuming, costly, and hence less likely to solve the global cancer crisis. Therefore, it is proposed to re-focus on personalized anticancer vaccinations to enhance the immunogenicity of autologous therapeutic tumor vaccines. Recent work re-established the idea of using the alarming agents of the immune system, oxidative modifications, as an intrinsic adjuvant to broaden the antitumor T cell receptor repertoire in cancer patients. The key novelty is the use of gas plasma, a multi-reactive oxygen and nitrogen species-generating technology, for diversifying oxidative protein modifications in a, so far, unparalleled manner. This significant innovation has been successfully used in proof-of-concept studies and awaits broader recognition and implementation to explore its chances and limitations of providing affordable personalized anticancer vaccines in the future. Such multidisciplinary advance is timely, as the current COVID-19 crisis is inexorably reflecting the utmost importance of innovative and effective vaccinations in modern times.

Loading...
Thumbnail Image
Item

Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients

2019, Gorpas, Dimitris, Phipps, Jennifer E., Bec, Julien, Ma, Dinglong, Dochow, Sebastian, Yankelevich, Diego R., Sorger, Jonathan, Popp, Jürgen, Bewley, Arnaud Fassett, Gandour-Edwards, Regina F., Marcu, Laura, Farwell, D. Gregory

Due to loss of tactile feedback the assessment of tumor margins during robotic surgery is based only on visual inspection, which is neither significantly sensitive nor specific. Here we demonstrate time-resolved fluorescence spectroscopy (TRFS) as a novel technique to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. TRFS enables identification of cancerous tissue by its distinct autofluorescence signature that is associated with the alteration of tissue structure and biochemical profile. A prototype TRFS instrument was integrated synergistically with the da Vinci Surgical robot and the combined system was validated in swine and human patients. Label-free and real-time assessment and visualization of tissue biochemical features during robotic surgery procedure, as demonstrated here, not only has the potential to improve the intraoperative decision making during TORS but also other robotic procedures without modification of conventional clinical protocols.

Loading...
Thumbnail Image
Item

Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data

2023, Badr, Hamada S., Colston, Josh M., Nguyen, Nhat-Lan H., Chen, Yen Ting, Burnett, Eleanor, Ali, Syed Asad, Rayamajhi, Ajit, Satter, Syed M., Van Trang, Nguyen, Eibach, Daniel, Krumkamp, Ralf, May, Jürgen, Adegnika, Ayola Akim, Manouana, Gédéon Prince, Kremsner, Peter Gottfried, Chilengi, Roma, Hatyoka, Luiza, Debes, Amanda K., Ateudjieu, Jerome, Faruque, Abu S. G., Hossain, M. Jahangir, Kanungo, Suman, Kotloff, Karen L, Mandomando, Inácio, Nisar, M. Imran, Omore, Richard, Sow, Samba O., Zaidi, Anita K. M., Lambrecht, Nathalie, Adu, Bright, Page, Nicola, Platts-Mills, James A., Mavacala Freitas, Cesar, Pelkonen, Tuula, Ashorn, Per, Maleta, Kenneth, Ahmed, Tahmeed, Bessong, Pascal, Bhutta, Zulfiqar A., Mason, Carl, Mduma, Estomih, Olortegui, Maribel P., Peñataro Yori, Pablo, Lima, Aldo A. M., Kang, Gagandeep, Humphrey, Jean, Ntozini, Robert, Prendergast, Andrew J., Okada, Kazuhisa, Wongboot, Warawan, Langeland, Nina, Moyo, Sabrina J., Gaensbauer, James, Melgar, Mario, Freeman, Matthew, Chard, Anna N., Thongpaseuth, Vonethalom, Houpt, Eric, Zaitchik, Benjamin F., Kosek, Margaret N.

BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and map its predicted prevalence across low-income and middle-income countries (LMICs). METHODS: Individual participant data for Shigella positivity in stool samples were sourced from multiple LMIC-based studies of children aged 59 months or younger. Covariates included household-level and participant-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted and prevalence predictions obtained by syndrome and age stratum. FINDINGS: 20 studies from 23 countries (including locations in Central America and South America, sub-Saharan Africa, and south and southeast Asia) contributed 66 563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Probability of Shigella infection exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhoea cases at 33°C temperatures, above which it decreased. Compared with unimproved sanitation, improved sanitation decreased the odds of Shigella infection by 19% (odds ratio [OR]=0·81 [95% CI 0·76-0·86]) and open defecation decreased them by 18% (OR=0·82 [0·76-0·88]). INTERPRETATION: The distribution of Shigella is more sensitive to climatological factors, such as temperature, than previously recognised. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, although hotspots also occur in South America and Central America, the Ganges-Brahmaputra Delta, and the island of New Guinea. These findings can inform prioritisation of populations for future vaccine trials and campaigns. FUNDING: NASA, National Institutes of Health-The National Institute of Allergy and Infectious Diseases, and Bill & Melinda Gates Foundation.

Loading...
Thumbnail Image
Item

Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study

2021, Zhao, Qi, Guo, Yuming, Ye, Tingting, Gasparrini, Antonio, Tong, Shilu, Overcenco, Ala, Urban, Aleš, Schneider, Alexandra, Entezari, Alireza, Vicedo-Cabrera, Ana Maria, Zanobetti, Antonella, Analitis, Antonis, Zeka, Ariana, Tobias, Aurelio, Nunes, Baltazar, Alahmad, Barrak, Armstrong, Ben, Forsberg, Bertil, Pan, Shih-Chun, Íñiguez, Carmen, Ameling, Caroline, De la Cruz Valencia, César, Åström, Christofer, Houthuijs, Danny, Dung, Do Van, Royé, Dominic, Indermitte, Ene, Lavigne, Eric, Mayvaneh, Fatemeh, Acquaotta, Fiorella, de'Donato, Francesca, Di Ruscio, Francesco, Sera, Francesco, Carrasco-Escobar, Gabriel, Kan, Haidong, Orru, Hans, Kim, Ho, Holobaca, Iulian-Horia, Kyselý, Jan, Madureira, Joana, Schwartz, Joel, Jaakkola, Jouni J. K., Katsouyanni, Klea, Hurtado Diaz, Magali, Ragettli, Martina S., Hashizume, Masahiro, Pascal, Mathilde, de Sousa Zanotti Stagliorio Coélho, Micheline, Valdés Ortega, Nicolás, Ryti, Niilo, Scovronick, Noah, Michelozzi, Paola, Matus Correa, Patricia, Goodman, Patrick, Nascimento Saldiva, Paulo Hilario, Abrutzky, Rosana, Osorio, Samuel, Rao, Shilpa, Fratianni, Simona, Dang, Tran Ngoc, Colistro, Valentina, Huber, Veronika, Lee, Whanhee, Seposo, Xerxes, Honda, Yasushi, Guo, Yue Leon, Bell, Michelle L., Li, Shanshan

Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. Funding: Australian Research Council and the Australian National Health and Medical Research Council. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license