Search Results

Now showing 1 - 10 of 102
  • Item
    An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum
    (Lausanne : Frontiers Media, 2021) Graf, Alexander C.; Striesow, Johanna; Pané-Farré, Jan; Sura, Thomas; Wurster, Martina; Lalk, Michael; Pieper, Dietmar H.; Becher, Dörte; Kahl, Barbara C.; Riedel, Katharina
    Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
  • Item
    ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities
    (Austin, Tex. : Landes Bioscience, 2021) Sagwal, Sanjeev Kumar; Bekeschus, Sander
    Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
  • Item
    The HIPPO Transducer YAP and Its Targets CTGF and Cyr61 Drive a Paracrine Signalling in Cold Atmospheric Plasma-Mediated Wound Healing
    (London: Hindawi, 2019) Shome, Debarati; von Woedtke, Thomas; Riedel, Katharina; Masur, Kai
    Reactive species play a pivotal role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signalling pathways that are involved in the homeostatic, inflammatory, proliferative, and remodelling phases of wound healing. The application of Cold Atmospheric Plasma (CAP) to the wound site produces a profusion of short- and long-lived reactive species that have been demonstrated to be effective in promoting wound healing; however, knowledge of the mechanisms underlying CAP-mediated wound healing remains scarce. To address this, an in vitro coculture model was used to study the effects of CAP on wound healing and on paracrine crosstalk between dermal keratinocytes and fibroblasts. Using this coculture model, we observed a stimulatory effect on the migration ability of HaCaT cells that were cocultured with dermal fibroblasts. Additionally, CAP treatment resulted in an upregulation of the HIPPO transcription factor YAP in HaCaTs and fibroblasts. Downstream effectors of the HIPPO signalling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts, and the administration of antioxidants could inhibit CAP-mediated wound healing and abrogate the gene expression of the HIPPO downstream effectors. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. An induction of CTGF and Cyr61 secretion was also observed upon CAP treatment in the fibroblast-conditioned media. Finally, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration. In summary, our results validated that CAP activates a regenerative signalling pathway at the onset of wound healing. Additionally, CAP also stimulated a reciprocal communication between dermal fibroblasts and keratinocytes, resulting in improved keratinocyte wound healing in coculture. © 2020 Debarati Shome et al.
  • Item
    Abschlussbericht zum Verbundprojekt Campus PlasmaMed, Teilvorhaben Campus PlasmaMed 6
    (Hannover : Technische Informationsbibliothek (TIB), 2011) Weltmann, Klaus-Dieter
    [no abstract available]
  • Item
    Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection
    (San Francisco, California, US : PLOS, 2021) Mohamed, Hager; Clemen, Ramona; Freund, Eric; Lackmann, Jan-Wilm; Wende, Kristian; Connors, Jennifer; Haddad, Elias K.; Dampier, Will; Wigdahl, Brian; Miller, Vandana; Bekeschus, Sander; Krebs, Fred C.; Kashanchi, Fatah
    Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
  • Item
    Short- and long-term polystyrene nano- and microplastic exposure promotes oxidative stress and divergently affects skin cell architecture and Wnt/beta-catenin signaling
    (London : BioMed Central, 2023) Schmidt, Anke; da Silva Brito, Walison Augusto; Singer, Debora; Mühl, Melissa; Berner, Julia; Saadati, Fariba; Wolff, Christina; Miebach, Lea; Wende, Kristian; Bekeschus, Sander
    Nano- and microplastic particles (NMP) are strong environmental contaminants affecting marine ecosystems and human health. The negligible use of biodegradable plastics and the lack of knowledge about plastic uptake, accumulation, and functional consequences led us to investigate the short- and long-term effects in freshly isolated skin cells from mice. Using fluorescent NMP of several sizes (200 nm to 6 Âµm), efficient cellular uptake was observed, causing, however, only minor acute toxicity as metabolic activity and apoptosis data suggested, albeit changes in intracellular reactive species and thiol levels were observed. The internalized NMP induced an altered expression of various targets of the nuclear factor-2-related transcription factor 2 pathway and were accompanied by changed antioxidant and oxidative stress signaling responses, as suggested by altered heme oxygenase 1 and glutathione peroxide 2 levels. A highly increased beta-catenin expression under acute but not chronic NMP exposure was concomitant with a strong translocation from membrane to the nucleus and subsequent transcription activation of Wnt signaling target genes after both single-dose and chronic long-term NMP exposure. Moreover, fibroblast-to-myofibroblast transdifferentiation accompanied by an increase of α smooth muscle actin and collagen expression was observed. Together with several NMP-induced changes in junctional and adherence protein expression, our study for the first time elucidates the acute and chronic effects of NMP of different sizes in primary skin cells' signaling and functional biology, contributing to a better understanding of nano- and microplastic to health risks in higher vertebrates.
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    In ovo model in cancer research and tumor immunology
    (Lausanne : Frontiers Media, 2022) Miebach, Lea; Berner, Julia; Bekeschus, Sander
    Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
  • Item
    Efficacy of plasma-polymerized allylamine coating of zirconia after five years
    (Basel : MDPI, 2020) Rohr, Nadja; Fricke, Katja; Bergemann, Claudia; Nebe, J Barbara; Fischer, Jens
    Plasma-polymerized allylamine (PPAAm) coatings of titanium enhance the cell behavior of osteoblasts. The purpose of the present study was to evaluate a PPAAm nanolayer on zirconia after a storage period of 5 years. Zirconia specimens were directly coated with PPAAm (ZA0) or stored in aseptic packages at room temperature for 5 years (ZA5). Uncoated zirconia specimens (Zmt) and the micro-structured endosseous surface of a zirconia implant (Z14) served as controls. The elemental compositions of the PPAAm coatings were characterized and the viability, spreading and gene expression of human osteoblastic cells (MG-63) were assessed. The presence of amino groups in the PPAAm layer was significantly decreased after 5 years due to oxidation processes. Cell viability after 24 h was significantly higher on uncoated specimens (Zmt) than on all other surfaces. Cell spreading after 20 min was significantly higher for Zmt = ZA0 > ZA5 > Z14, while, after 24 h, spreading also varied significantly between Zmt > ZA0 > ZA5 > Z14. The expression of the mRNA differentiation markers collagen I and osteocalcin was upregulated on untreated surfaces Z14 and Zmt when compared to the PPAAm specimens. Due to the high biocompatibility of zirconia itself, a PPAAm coating may not additionally improve cell behavior.
  • Item
    Acquired cancer tyrosine kinase inhibitor resistance: ROS as critical determinants
    (London : Macmillan Publishers, part of Springer Nature, 2021) Bekeschus, Sander
    [No abstract available]