Search Results

Now showing 1 - 3 of 3
  • Item
    Preventing airborne transmission of SARS-CoV-2 in hospitals and nursing homes
    (Basel : MDPI AG, 2020) Ahlawat, Ajit; Mishra, Sumit Kumar; Birks, John W.; Costabile, Francesca; Wiedensohler, Alfred
    [No abstract available]
  • Item
    Physico-Chemical Properties and Deposition Potential of PM2.5 during Severe Smog Event in Delhi, India
    (Basel : MDPI AG, 2022) Fatima, Sadaf; Mishra, Sumit Kumar; Ahlawat, Ajit; Dimri, Ashok Priyadarshan
    The present work studies a severe smog event that occurred in Delhi (India) in 2017, targeting the characterization of PM2.5 and its deposition potential in human respiratory tract of different population groups in which the PM2.5 levels raised from 124.0 µg/m3 (pre-smog period) to 717.2 µg/m3 (during smog period). Higher concentration of elements such as C, N, O, Na, Mg, Al, Si, S, Fe, Cl, Ca, Ti, Cr, Pb, Fe, K, Cu, Cl, P, and F were observed during the smog along with dominant organic functional groups (aldehyde, ketones, alkyl halides (R-F; R-Br; R-Cl), ether, etc.), which supported potential contribution from transboundary biomass-burning activities along with local pollution sources and favorable meteorological conditions. The morphology of individual particles were found mostly as non-spherical, including carbon fractals, aggregates, sharp-edged, rod-shaped, and flaky structures. A multiple path particle dosimetry (MPPD) model showed significant deposition potential of PM2.5 in terms of deposition fraction, mass rate, and mass flux during smog conditions in all age groups. The highest PM2.5 deposition fraction and mass rate were found for the head region followed by the alveolar region of the human respiratory tract. The highest mass flux was reported for 21-month-old (4.7 × 102 µg/min/m2), followed by 3-month-old (49.2 µg/min/m2) children, whereas it was lowest for 21-year-old adults (6.8 µg/min/m2), indicating babies and children were more vulnerable to PM2.5 pollution than adults during smog. Deposition doses of toxic elements such as Cr, Fe, Zn, Pb, Cu, Mn, and Ni were also found to be higher (up to 1 × 10−7 µg/kg/day) for children than adults.
  • Item
    Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar
    (Basel : MDPI AG, 2021) Floutsi, Athena Augusta; Baars, Holger; Radenz, Martin; Haarig, Moritz; Yin, Zhenping; Seifert, Patric; Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Barja, Boris; Zamorano, Felix; Wandinger, Ulla
    In this paper, we present long-term observations of the multiwavelength Raman lidar PollyXT conducted in the framework of the DACAPO-PESO campaign. Regardless of the relatively clean atmosphere in the southern mid-latitude oceans region, we regularly observed events of long-range transported smoke, originating either from regional sources in South America or from Australia. Two case studies will be discussed, both identified as smoke events that occurred on 5 February 2019 and 11 March 2019. For the first case considered, the lofted smoke layer was located at an altitude between 1.0 and 4.2 km, and apart from the predominance of smoke particles, particle linear depolarization values indicated the presence of dust particles. Mean lidar ratio values at 355 and 532 nm were 49 ± 12 and 24 ± 18 sr respectively, while the mean particle linear depolarization was 7.6 ± 3.6% at 532 nm. The advection of smoke and dust particles above Punta Arenas affected significantly the available cloud condensation nuclei (CCN) and ice nucleating particles (INP) in the lower troposphere, and effectively triggered the ice crystal formation processes. Regarding the second case, the thin smoke layers were observed at altitudes 5.5–7.0, 9.0 and 11.0 km. The particle linear depolarization ratio at 532 nm increased rapidly with height, starting from 2% for the lowest two layers and increasing up to 9.5% for the highest layer, indicating the possible presence of non-spherical coated soot aggregates. INP activation was effectively facilitated. The long-term analysis of the one year of observations showed that tropospheric smoke advection over Punta Arenas occurred 16 times (lasting from 1 to 17 h), regularly distributed over the period and with high potential to influence cloud formation in the otherwise pristine environment of the region.