Search Results

Now showing 1 - 10 of 125
  • Item
    Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes
    (Cambridge : Royal Society of Chemistry, 2016) Zeiger, Marco; Fleischmann, Simon; Krüner, Benjamin; Tolosa, Aura; Bechtel, Stephan; Baltes, Mathias; Schreiber, Anna; Moroni, Riko; Vierrath, Severin; Thiele, Simon; Presser, Volker
    Manganese oxide presents very promising electrochemical properties as an electrode material in supercapacitors, but there remain important open questions to guide further development of the complex manganese oxide/carbon/electrolyte system. Our work addresses specifically the influence of carbon ordering and the difference between outer and inner porosity of carbon particles for the application in aqueous 1 M Na2SO4 and 1 M LiClO4 in acetonitrile. Birnessite-type manganese oxide was hydrothermally hybridized on two kinds of carbon onions with only outer surface area and different electrical conductivity, and conventional activated carbon with a high inner porosity. Carbon onions with a high degree of carbon ordering, high conductivity, and high outer surface area were identified as the most promising material, yielding 179 F g−1. Pore blocking in activated carbon yields unfavorable electrochemical performances. The highest specific energy of 16.4 W h kg−1 was measured for a symmetric full-cell arrangement of manganese oxide coated high temperature carbon onions in the organic electrolyte. High stability during 10 000 cycles was achieved for asymmetric full-cells, which proved as a facile way to enhance the electrochemical performance stability.
  • Item
    Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors
    (Weinheim [u.a.] : Wiley-VCH, 2019) Abbas, Qamar; Gollas, Bernhard; Presser, Volker
    The Faradaic processes related to electrochemical water reduction at the nanoporous carbon electrode under negative polarization are reduced when the concentration of aqueous sodium nitrate (NaNO3) is increased or the temperature is decreased. This effect enhances the relative contribution of ion electrosorption to the total charge storage process. Hydrogen chemisorption is reduced in aqueous 8.0 m NaNO3 due to the low degree of hydration of the Na+ cation; consequently, less free water is available for redox contributions, driving the system to exhibit electrical double-layer capacitive characteristics. Hydrogen adsorption/desorption is facilitated in 1.0 m NaNO3 due to the high molar ratio. The excess of water shifts the local pH in carbon nanopores to neutral values, giving rise to a high overpotential for dihydrogen evolution in the latter. The dilution effect on local pH shift in 1.0 m NaNO3 can be reduced by decreasing the temperature. A symmetric activated carbon cell assembled with 8.0 m NaNO3 exhibits a high capacitance and coulombic efficiency, a larger contribution of ion electrosorption to the overall charge storage process, and a stable capacitance performance at 1.6 V. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
  • Item
    Cell adhesion on RGD-displaying knottins with varying numbers of tryptophan amino acids to tune the affinity for assembly on cucurbit[8]uril surfaces
    (Washington D.C. : American Chemical Society, 2017) Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal
    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]-uril (CB[8]) and surface-tethered methylviologen (MV2+). The binding affinity of the knottins with CB[8] and MV2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.
  • Item
    Microenvironments designed to support growth and function of neuronal cells
    (Lausanne : Frontiers Media, 2018) Farrukh, Aleeza; Zhao, Shifang; del Campo, Aránzazu
    Strategies for neural tissue repair heavily depend on our ability to temporally reconstruct the natural cellular microenvironment of neural cells. Biomaterials play a fundamental role in this context, as they provide the mechanical support for cells to attach and migrate to the injury site, as well as fundamental signals for differentiation. This review describes how different cellular processes (attachment, proliferation, and (directional) migration and differentiation) have been supported by different material parameters, in vitro and in vivo. Although incipient guidelines for biomaterial design become visible, literature in the field remains rather phenomenological. As in other fields of tissue regeneration, progress will depend on more systematic studies on cell-materials response, better understanding on how cells behave and understand signals in their natural milieu from neurobiology studies, and the translation of this knowledge into engineered microenvironments for clinical use.
  • Item
    Cohesive detachment of an elastic pillar from a dissimilar substrate
    (Amsterdam : Elsevier, 2017) Fleck, Norman A.; Khaderi, Syed Nizamuddin; McMeeking, Robert M.; Arzt, Eduard
    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of in- tense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion- strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohe- sive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value H c of the corner stress inten- sity. The estimated pull-offforce is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and sub- strate.
  • Item
    Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo
    (Weinheim : Wiley-VCH, 2021) Pearson, Samuel; Feng, Jun; del Campo, Aránzazu
    Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Corrosion protection by nanostructured materials - a big step forward in the industrial usage of these materials - EU project MULTIPROTECT has been successfully finished : publishable executive summary
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2010) Veith, M.; Wittmar, M.; Hahn, Corinna
    [no abstract available]
  • Item
    Langzeitstabile Formtrennschichten auf BN-Basis für metallurgische Anwendungen : Schlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2004) Schwetz, Karl; Adam, Jens; Drumm, Robert; Ehlen, Frank; Grossman, Kai; Hareesh, Nair
    [no abstract available]
  • Item
    Monitoring the contact stress distribution of gecko-inspired adhesives using mechano-sensitive surface coatings
    (Washington D.C. : American Chemical Society, 2018) Neubauer, Jens W.; Xue, Longjian; Erath, Johann; Drotlef, Dirk-Michael; del Campo, Aránzazu; Fery, Andreas
    The contact geometry of microstructured adhesive surfaces is of high relevance for adhesion enhancement. Theoretical considerations indicate that the stress distribution in the contact zone is crucial for the detachment mechanism, but direct experimental evidence is missing so far. In this work, we propose a method that allows, for the first time, the detection of local stresses at the contact area of biomimetic adhesive microstructures during contact formation, compression and detachment. We use a mechano-sensitive polymeric layer, which turns mechanical stresses into changes of fluorescence intensity. The biomimetic surface is brought into contact with this layer in a well-defined fashion using a microcontact printer, while the contact area is monitored with fluorescence microscopy in situ. Thus, changes in stress distribution across the contact area during compression and pull-off can be visualized with a lateral resolution of 1 μm. We apply this method to study the enhanced adhesive performance of T-shaped micropillars, compared to flat punch microstructures. We find significant differences in the stress distribution of the both differing contact geometries during pull-off. In particular, we find direct evidence for the suppression of crack nucleation at the edge of T-shaped pillars, which confirms theoretical models for the superior adhesive properties of these structures.