Search Results

Now showing 1 - 5 of 5
  • Item
    Charged polymers transport under applied electric fields in periodic channels
    (Basel : MDPI AG, 2013) Nedelcu, S.; Sommer, J.-U.
    By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.
  • Item
    Liquid sensing: Smart polymer/CNT composites
    (Amsterdam [u.a.] : Elsevier, 2011) Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P.
    Today polymer/carbon nanotube (CNT) composites can be found in sports equipment, cars, and electronic devices. The growth of old and new markets in this area has been stimulated by our increased understanding of relevant production and processing methods, as well as the considerable price reduction of industrial CNT grades. In particular, CNT based electrically conductive polymer composites (CPCs) offer a range of opportunities because of their unique property profile; they demonstrate low specific gravity in combination with relatively good mechanical properties and processability. The electrical conductivity of polymer/CNT composites results from a continuous filler network that can be affected by various external stimuli, such as temperature shifts, mechanical deformations, and the presence of gases and vapors or solvents. Accordingly, CNT based CPCs represent promising candidates for the design of smart components capable of integrated monitoring. In this article we focus on their use as leakage detectors for organic solvents.
  • Item
    Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials
    (New York, NY [u.a.] : Elsevier, 2011) Nandan, B.; Kuila, B.K.; Stamm, M.
    Self-assembled polymeric systems have played an important role as templates for nanofabrication; they offer nanotemplates with different morphologies and tunable sizes, are easily removed after reactions, and could be further modified with different functional groups to enhance the interactions. Among the various self-assembled polymeric systems, block copolymer supramolecular assemblies have received considerable attention because of the inherent processing advantages. These supramolecular assemblies are formed by the non-covalent interactions of one of the blocks of the block copolymer with a low molar-mass additive. Selective extraction of the additive leads to porous membranes or nano-objects which could then be used as templates for nanofabrication leading to a variety of ordered organic/inorganic nanostructures. In this feature article, we present an over-view of the recent developments in this area with a special focus on some examples from our group.
  • Item
    Polymer Brushes under High Load
    (San Francisco, CA : Public Library of Science, 2013) Balko, S.M.; Kreer, T.; Costanzo, P.J.; Patten, T.E.; Johner, A.; Kuhl, T.L.; Marques, C.M.
    Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties.
  • Item
    Investigation of changes in crystalline and amorphous structure during deformation of nano-reinforced semi-crystalline polymers by space-resolved synchrotron saxs and waxs
    (Amsterdam : Elsevier, 2009) Schneider, K.; Schone, A.; Jun, T.-S.; Korsunsky, A.M.
    Complex structural changes occur in semi-crystalline polymers during deformation. In (nano-)filled systems the situation becomes even more complicated, since not only phase changes may take place, but also local (interfacial) failure between phases may occur. To help identify specific processes taking place within these systems, simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) measurements were performed using synchrotron radiation during in situ deformation. Using a highly focused beam, spatially resolved local information can be extracted by scanning the beam across the deformed/damaged region within the sample. The characteristic changes in the different phases are presented and discussed. While the study of WAXS patterns gives insight into the orientation and dimensions of the crystallites, SAXS provides information about the mutual arrangement of phases and the interfacial failure phenomena. Based on the analysis of the results obtained in our experiments it will be shown that the first changes in the crystalline phase appear long before macroscopic yielding of the sample is reached, i.e. the onset of irreversible deformation takes place. In the post-yield regime radical changes are observed in both the long- and short-range structures. It is concluded that the presence of nano-fillers exerts a strong influence on the establishment of microcrystalline structure, and hence also on the deformation behaviour at the microscopic scale.