Search Results

Now showing 1 - 3 of 3
  • Item
    240-GHz Reflectometer-Based Dielectric Sensor With Integrated Transducers in a 130-nm SiGe BiCMOS Technology
    (New York, NY : IEEE, 2021) Wang, Defu; Eissa, Mohamed Hussein; Schmalz, Klaus; Kampfe, Thomas; Kissinger, Dietmar
    This article presents a reflectometer-based on-chip dielectric sensor with integrated transducers at 240 GHz. The chip simplifies the measurement of a vector network analyzer (VNA) to sense the incident and reflected waves by using two heterodyne mixer-based receivers with a dielectric sensing element. Radio frequency (RF) and local oscillator (LO) submillimeter waves are generated by two frequency multiplier chains, respectively. Two back-to-back identical differential side-coupled directive couplers are proposed to separate the incident and reflected signals and couple them to mixers. Both transmission line and coplanar stripline transducers are proposed and integrated with reflectometer to investigate the sensitivity of dielectric sensors. The latter leads to a larger power variation of the reflectometer by providing more sufficient operating bands for the magnitude and phase slope of S11 . The readout of the transducers upon exposure to liquids is performed by the measurement of their reflected signals using two external excitation sources. The experimental dielectric sensing is demonstrated by using binary methanol–ethanol mixture placed on the proposed on-chip dielectric sensor in the assembled printed circuit board. It enables a maximum 8 dB of the power difference between the incident and reflected channels on the measurement of liquid solvents. Both chips occupy an area of 4.03 mm 2 and consume 560 mW. Along with a wide operational frequency range from 200 to 240 GHz, this simplified one-port-VNA-based on-chip device makes it feasible for the use of handle product and suitable for the submillimeter-wave dielectric spectroscopy applications.
  • Item
    High-performance SiGe HBTs for next generation BiCMOS technology
    (Bristol : IOP Publ., 2018) Rücker, Holger; Heinemann, Bernd
    This paper addresses fabrication aspects of SiGe heterojunction bipolar transistors which record high-speed performance. We previously reported fT values of 505 GHz, fMAX values of 720 GHz, and ring oscillator gate delays of 1.34 ps for these transistors. The impact of critical process steps on radio frequency performance is discussed. This includes millisecond annealing for enhanced dopant activation and optimization of the epitaxial growth process of the base layer. It is demonstrated that the use of a disilane precursor instead of silane can result in reduced base resistance and favorable device scalability.
  • Item
    SISSI-LO : Schlussbericht ; Berichtszeitraum: 01.07.2011 bis 31.10.2012
    (Hannover : Technische Informationsbibliothek (TIB), 2013) Herzel, Frank
    [no abstract available]