Search Results

Now showing 1 - 10 of 12
  • Item
    Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR
    (Basel : MDPI AG, 2019) Tsoulias, Nikos; Paraforos, Dimitrios S.; Fountas, Spyros; Zude-Sasse, Manuela
    Data of canopy morphology are crucial for cultivation tasks within orchards. In this study, a 2D light detection and range (LiDAR) laser scanner system was mounted on a tractor, tested on a box with known dimensions (1.81 m × 0.6 m × 0.6 m), and applied in an apple orchard to obtain the 3D structural parameters of the trees (n = 224). The analysis of a metal box which considered the height of four sides resulted in a mean absolute error (MAE) of 8.18 mm with a bias (MBE) of 2.75 mm, representing a root mean square error (RMSE) of 1.63% due to gaps in the point cloud and increased incident angle with enhanced distance between laser aperture and the object. A methodology based on a bivariate point density histogram is proposed to estimate the stem position of each tree. The cylindrical boundary was projected around the estimated stem positions to segment each individual tree. Subsequently, height, stem diameter, and volume of the segmented tree point clouds were estimated and compared with manual measurements. The estimated stem position of each tree was defined using a real time kinematic global navigation satellite system, (RTK-GNSS) resulting in an MAE and MBE of 33.7 mm and 36.5 mm, respectively. The coefficient of determination (R2) considering manual measurements and estimated data from the segmented point clouds appeared high with, respectively, R2 and RMSE of 0.87 and 5.71% for height, 0.88 and 2.23% for stem diameter, as well as 0.77 and 4.64% for canopy volume. Since a certain error for the height and volume measured manually can be assumed, the LiDAR approach provides an alternative to manual readings with the advantage of getting tree individual data of the entire orchard.
  • Item
    A Parametric Model for Local Air Exchange Rate of Naturally Ventilated Barns
    (Basel : MDPI AG, 2021) Doumbia, E. Moustapha; Janke, David; Yi, Qianying; Prinz, Alexander; Amon, Thomas; Kriegel, Martin; Hempel, Sabrina
    With an increasing number of naturally ventilated dairy barns (NVDBs), the emission of ammonia and greenhouse gases into the surrounding environment is expected to increase as well. It is very challenging to accurately determine the amount of gases released from a NVDB on-farm. Moreover, control options for the micro-climate to increase animal welfare are limited in an NVDB at present. Both issues are due to the complexity of the NVDB micro-environment, which is subject to temporal (such as wind direction and temperature) and spatial (such as openings and animals acting as airflow obstacles) fluctuations. The air exchange rate (AER) is one of the most valuable evaluation entities, since it is directly related to the gas emission rate and animal welfare. In this context, our study determined the general and local AERs of NVDBs of different shapes under diverse airflow conditions. Previous works identified main influencing parameters for the general AER and mathematically linked them together to predict the AER of the barn as a whole. The present research study is a continuation and extension of previous studies about the determination of AER. It provides new insights into the influence of convection flow regimes. In addition, it goes further in precision by determining the local AERs, depending on the position of the considered volume inside the barn. After running several computational fluid dynamics (CFD) simulations, we used the statistical tool of general linear modeling in order to identify quantitative relationships between the AER and the following five influencing parameters, the length/width ratio of the barn, the side opening configuration, the airflow temperature, magnitude and incoming direction. The work succeeded in taking the temperature into account as a further influencing parameter in the model and, thus, for the first time, in analysing the effect of the different types of flow convection in this context. The resulting equations predict the barn AER with an R2 equals 0.98 and the local AER with a mean R2 equals around 0.87. The results go a step further in the precise determination of the AER of NVDB and, therefore, are of fundamental importance for a better and deeper understanding of the interaction between the driving forces of AER in NVDB.
  • Item
    Base Neutralizing Capacity of Agricultural Soils in a Quaternary Landscape of North-East Germany and Its Relationship to Best Management Practices in Lime Requirement Determination
    (Basel : MDPI AG, 2020) Vogel, Sebastian; Bönecke, Eric; Kling, Charlotte; Kramer, Eckart; Lück, Katrin; Nagel, Anne; Philipp, Golo; Rühlmann, Jörg; Schröter, Ingmar; Gebbers, Robin
    Despite being a natural soil-forming process, soil acidification is a major agronomic challenge under humid climate conditions, as soil acidity influences several yield-relevant soil properties. It can be counterbalanced by the regular application of agricultural lime to maintain or re-establish soil fertility and to optimize plant growth and yield. To avoid underdose as well as overdose, lime rates need to be calculated carefully. The lime rate should be determined by the optimum soil pH (target pH) and the response of the soil to lime, which is described by the base neutralizing capacity (BNC). Several methods exist to determine the lime requirement (LR) to raise the soil pH to its optimum. They range from extremely time-consuming equilibration methods, which mimic the natural processes in the soil, to quick tests, which rely on some approximations and are designed to provide farmers with timely and cost-efficient data. Due to the higher analytical efforts, only limited information is available on the real BNC of particular soils. In the present paper, we report the BNC of 420 topsoil samples from Central Europe (north-east Germany), developed on sediments from the last ice age 10,000 years ago under Holocene conditions. These soils are predominantly sandy and low in humus, but they exhibit a huge spatial variability in soil properties on a small scale. The BNC was determined by adding various concentrations of Ca(OH)2 and fitting an exponential model to derive a titration curve for each sample. The coefficients of the BNC titration curve were well correlated with soil properties affecting soil acidity and pH buffer capacity, i.e., pH, soil texture and soil organic matter (SOM). From the BNC model, the LRs (LRBNC) were derived and compared with LRVDLUFA based on the standard protocol in Germany as established by the Association of German Agricultural Analytic and Research Institutes (VDLUFA). The LRBNC and LRVDLUFA correlated well but the LRVDLUFA were generally by approximately one order of magnitude higher. This is partly due to the VDLUFA concept to recommend a maintenance or conservation liming, even though the pH value is in the optimum range, to keep it there until the next lime application during the following rotation. Furthermore, the VDLUFA method was primarily developed from field experiments where natural soil acidification and management practices depressed the effect of lime treatment. The BNC method, on the other hand, is solely based on laboratory analysis with standardized soil samples. This indicates the demand for further research to develop a sound scientific algorithm that complements LRBNC with realistic values of annual Ca2+ removal and acidification by natural processes and N fertilization.
  • Item
    An alternative to field retting: Fibrous materials based on wet preserved hemp for the manufacture of composites
    (Basel : MDPI AG, 2019) Gusovius, H.-J.; Lühr, C.; Hoffmann, T.; Pecenka, R.; Idler, C.
    A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.
  • Item
    Extrusion of Different Plants into Fibre for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fibre-Properties
    (Basel : MDPI AG, 2021) Dittrich, Christian; Pecenka, Ralf; Loes, Anne-Kristin; Caceres, Rafaela; Conroy, Judith; Rayns, Francis; Schmutz, Ulrich; Kir, Alev; Kruggel-Emden, Harald
    Peat is a highly contentious input in agriculture. Replacing or reducing peat by substitution with lignocellulosic biomass processed into fibre by twin-screw-extrusion could contribute to more sustainable agriculture with regard to horticultural production. Therefore, plant wastes including pruning from Olea europaea L. and Vitis spp. L., residues from perennial herbs like Salvia spp. L., Populus spp. L. and forest biomass were processed to fibre for peat replacement with a biomass extruder. The water-holding-capacity (WHC), particle-size-distribution and other physical fibre characteristics were determined and compared to peat. The specific energy demand during extrusion was measured for aperture settings from 6–40 mm. No fibre reached the 82% WHC of peat. At the setting of 20 mm of all materials investigated, Salvia performed best with a WHC of 53% and moderate specific energy demand (167 kWh tDM−1) followed by Olea europaea with a WHC of 43% and a low energy demand (93 kWh tDM−1). For Populus, opening the aperture from 20–40 mm decreased energy demand by 41% and WHC by 27%. The drying of biomass for storage and remoistening during extrusion increased the specific energy demand. Despite a lower WHC than peat, all investigated materials are suitable to replace peat in growing media regarding their physical properties.
  • Item
    Effects of Pre-Processing Hot-Water Treatment on Aroma Relevant VOCs of Fresh-Cut Apple Slices Stored in Sugar Syrup
    (Basel : MDPI AG, 2020) Rux, Guido; Efe, Efecan; Ulrichs, Christian; Huyskens-Keil, Susanne; Hassenberg, Karin; Herppich, Werner B.
    In practice, fresh-cut fruit and fruit salads are currently stored submerged in sugar syrup (approx. 20%) to prevent browning, to slow down physiological processes and to extend shelf life. To minimize browning and microbial spoilage, slices may also be dipped in a citric acid/ascorbic acid solution for 5 min before storage in sugar syrup. To prevent the use of chemicals in organic production, short-term (30 s) hot-water treatment (sHWT) may be an alternative for gentle sanitation. Currently, profound knowledge on the impact of both sugar solution and sHWT on aroma and physiological properties of immersed fresh-cuts is lacking. Aroma is a very important aspect of fruit quality and generated by a great variety of volatile organic compounds (VOCs). Thus, potential interactive effects of sHWT and sugar syrup storage on quality of fresh-cut apple slices were evaluated, focusing on processing-induced changes in VOCs profiles. Intact ’Braeburn’ apples were sHW-treated at 55 °C and 65 °C for 30 s, sliced, partially treated with a commercial ascorbic/citric acid solution and slices stored in sugar syrup at 4 °C up to 13 days. Volatile emission, respiration and ethylene release were measured on storage days 5, 10 and 13. The impact of sHWT on VOCs was low while immersion and storage in sugar syrup had a much higher influence on aroma. sHWT did not negatively affect aroma quality of products and may replace acid dipping.
  • Item
    Effect of blanching plus fermentation on selected functional properties of mealworm (Tenebrio molitor) powders
    (Basel : MDPI AG, 2020) Borremans, An; Bußler, Sara; Tchewonpi Sagu, Sorel; Rawel, Harshadrai; Schlüter, Oliver K.; Leen, Van Campenhout
    The aim of this study was to determine the effect of blanching followed by fermentation of mealworms (Tenebrio molitor) with commercial meat starter cultures on the functional properties of powders produced from the larvae. Full fat and defatted powder samples were prepared from non-fermented and fermented mealworm pastes. Then the crude protein, crude fat, and dry matter contents, pH, bulk density, colour, water and oil binding capacity, foaming capacity and stability, emulsion capacity and stability, protein solubility, quantity of free amino groups, and protein composition of the powders were evaluated. Regardless of the starter culture used, the blanching plus fermentation process reduced the crude and soluble protein contents of the full fat powders and in general impaired their water and oil binding, foaming, and emulsifying properties. Defatting of the powders improved most functional properties studied. The o-phthaldialdehyde assay revealed that the amount of free amino groups was higher in the fermented powders while sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the soluble proteins of the fermented powders were composed of molecules of lower molecular mass compared to non-fermented powders. As molecular sizes of the soluble proteins decreased, it was clear that the protein structure was also modified by the fermentation process, which in turn led to changes in functional properties. In general, it was concluded that fermentation of mealworms with blanching as a pre-treatment does not contribute to the functional properties studied in this work. Nevertheless, the results confirmed that the properties of non-fermented powders are comparable to other food protein sources. © 2020 by the authors.
  • Item
    Optimization of short-term hot-water treatment of apples for fruit salad production by non-invasive chlorophyll-fluorescence imaging
    (Basel : MDPI AG, 2020) Herppich, Werner B.; Maggioni, Marco; Huyskens-Keil, Susanne; Kabelitz, Tina; Hassenberg, Karin
    For fresh ]cut salad production, hot-water treatment (HWT) needs optimization in terms of temperature and duration to guarantee a gentle and non-stressing processing to fully retain product quality besides an effective sanitation. One major initial target of heat treatment is photosynthesis, making it a suitable and sensitive marker for HWT effects. Chlorophyll fluorescence imaging (CFI) is a rapid and non ]invasive tool to evaluate respective plant responses. Following practical applications in fruit salad production, apples of colored and of green ]ripe cultivars ( eBraeburn f, eFuji f, eGreenstar f, eGranny Smith f), obtained from a local fruit salad producer, were hot ]water treated from 44 to 70 °C for 30 to 300 s. One day after HWT and after 7 days of storage at 4 °C, CFI and remission spectroscopy were applied to evaluating temperature effects on photosynthetic activity, on contents of fruit pigments (chlorophylls, anthocyanins), and on various relevant quality parameters of intact apples. In eBraeburn f apples, short ]term HWT at °C for 30 to 120 s avoided any heat injuries and quality losses. The samples of the other three cultivars turned out to be less sensitive and may be short-term heat-treated at temperatures of up to 60 °C for the same time. CFI proved to be a rapid, sensitive, and effective tool for process optimization of apples, closely reflecting the cultivar-or batch-specificity of heat effects on produce photosynthesis. © 2020 by the authors.
  • Item
    Effects of Pre-Processing Short-Term Hot-Water Treatments on Quality and Shelf Life of Fresh-Cut Apple Slices
    (Basel : MDPI AG, 2019) Rux, Guido; Efe, Efecan; Ulrichs, Christian; Huyskens-Keil, Susanne; Hassenberg, Karin; Herppich, Werner B.
    Processing, especially cutting, reduces the shelf life of fruits. In practice, fresh-cut fruit salads are, therefore, often sold immersed in sugar syrups to increase shelf life. Pre-processing short-term hot-water treatments (sHWT) may further extend the shelf life of fresh-cuts by effectively reducing microbial contaminations before cutting. In this study, fresh-cut ‘Braeburn’ apples, a major component of fruit salads, were short-term (30 s) hot water-treated (55 °C or 65 °C), partially treated with a commercial anti-browning solution (ascorbic/citric acid) after cutting and, thereafter, stored immersed in sugar syrup. To, for the first time, comprehensively and comparatively evaluate the currently unexplored positive or negative effects of these treatments on fruit quality and shelf life, relevant parameters were analyzed at defined intervals during storage at 4 °C for up to 13 days. Compared to acid pre-treated controls, sHWT significantly reduced the microbial loads of apple slices but did not affect their quality during the 5 day-standard shelf life period of fresh-cuts. Yeasts were most critical for shelf life of fresh-cut apples immersed in sugar syrup. The combination of sHWT and post-processing acid treatment did not further improve quality or extend shelf life. Although sHWT could not extend potential maximum shelf life beyond 10 d, results highlighted the potentials of this technique to replace pre-processing chemical treatments and, thus, to save valuable resources.
  • Item
    Effect of In Vitro Digestion on the Antioxidant and Angiotensin-Converting Enzyme Inhibitory Potential of Buffalo Milk Processed Cheddar Cheese
    (Basel : MDPI AG, 2021) Shaukat, Amal; Nadeem, Muhammad; Qureshi, Tahir Mahmood; Kanwal, Rabia; Sultan, Muhammad; Kashongwe, Olivier Basole; Shamshiri, Redmond R.; Murtaza, Mian Anjum
    The purpose of this study was to develop an in-vitro digestion protocol to evaluate the antioxidant potential of the peptides found in processed cheddar cheese using digestion enzymes. We first studied antioxidant and angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of processed cheddar cheese with the addition of spices e.g., cumin, clove, and black pepper made from buffalo milk and ripened for 9 months. Then we conducted an in vitro digestion of processed cheddar cheese by gastric and duodenal enzymes. Freeze-dried water (WSE) and ethanol-soluble fractions (ESE) of processed cheddar cheese were also monitored for their ACE inhibition activity and antioxidant activities. In our preliminary experiments, different levels of spices (cumin, clove, and black pepper) were tested into a cheese matrix and only one level 0.2 g/100 g (0.2%) based on cheese weight was considered good after sensory evaluation. Findings of the present study revealed that ACE-inhibitory potential was the highest in processed cheese made from buffalo milk with the addition of 0.2% cumin, clove, and black pepper. A significant increase in ACE-inhibition (%) of processed cheddar cheese, as well as its WSE and ESE, was obtained. Lower IC50 values were found after duodenal phase digestion compared to oral phase digestion.