Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Towards on-site testing of Phytophthora species

2014, Schwenkbier, Lydia, Pollok, Sibyll, König, Stephan, Urban, Matthias, Werres, Sabine, Cialla-May, Dana, Weber, Karina, Popp, Jürgen

Rapid detection and accurate identification of plant pathogens in the field is an ongoing challenge. In this study, we report for the first time on the development of a helicase-dependent isothermal amplification (HDA) in combination with on-chip hybridization for the detection of selected Phytophthora species. The HDA approach allows efficient amplification of the yeast GTP-binding protein (Ypt1) target gene region at one constant temperature in a miniaturized heating device. The assay's specificity was determined by on-chip DNA hybridization and subsequent silver nanoparticle deposition. The silver deposits serve as stable endpoint signals that enable the visual as well as the electrical readout. Our promising results point to the direction of a near future on-site application of the combined techniques for a reliable detection of Phytophthora species.

Loading...
Thumbnail Image
Item

Application of scanning electrochemical microscopy for topography imaging of supported lipid bilayers

2022, Nasri, Zahra, Memari, Seyedali, Striesow, Johanna, Weltmann, Klaus-Dieter, von Woedtke, Thomas, Wende, Kristian

Oxidative stress in cellular environments may cause lipid oxidation and membrane degradation. Therefore, studying the degree of lipid membrane morphological changes by reactive oxygen and nitrogen species will be informative in oxidative stress-based therapies. This study introduces the possibility of using scanning electrochemical microscopy as a powerful imaging technique to follow the topographical changes of a solid-supported lipid bilayer model induced by reactive species produced from gas plasma. The introduced strategy is not limited to investigating the effect of reactive species on the lipid bilayer but could be extended to understand the morphological changes of the lipid bilayer due to the action of membrane proteins or antimicrobial peptides.