Search Results

Now showing 1 - 10 of 23
  • Item
    Development and Implementation of a Guideline for the Combination of Additively Manufactured Joint Assemblies with Wire Actuators made of Shape Memory Alloys
    (Amsterdam [u.a.] : Elsevier, 2023) Löffler, Robin; Tremmel, Stephan; Hornfeck, Rüdiger
    Smart Materials actuators in the form of wires made of shape memory alloys in combination with additively manufactured carrier components are used in a wide variety of prototype developments of innovative joint assemblies. This combination is relevant because of the same manufacturing costs of the additively manufactured components, which are independent of the quantity of parts, the free geometric design possibilities as well as the huge energy density of the aforementioned actuator technology. In particular, the focus is on the possibility of appropriately fitting large wire lengths on a compact part volume while taking into account acceptable force losses. Since there is no design guideline for such joint developments, each is individual, which results in unnecessarily long development times and a higher risk of errors. Based on selected in-house and third-party examples, integration possibilities of shape memory alloy wire actuators in additively manufactured carrier components are analysed and transferred into a universally applicable design guideline. These recommendations are brought into the framework of existing design guidelines of the VDI (Verein Deutscher Ingenieure – Association of German Engineers), namely VDI 2206 and VDI 2221 with extensions for additive manufacturing, for a better usability and integrability into existing processes. Finally, this results in a simplified access to the topic of the combination of additive manufacturing and shape memory alloys and a more efficient realisation of such joint developments.
  • Item
    Failure mechanism analysis based on laser-based surface treatments for aluminum-polyamide laser joining
    (Amsterdam [u.a.] : Elsevier, 2021) Elahi, Amne; Koch, Marcus; Bardon, Julien; Addiego, Frédéric; Plapper, Peter
    The development of strong metal to polymer assemblies is currently an important research subject thanks to its prominence to develop lightweight structures. Furthermore, laser welding is known to be a fast, reliable, and versatile joining process, and it was demonstrated recently that it can be applied to such metal to polymer systems. To enhance the mechanical properties of the laser-joined aluminum-polyamide (Al-PA) specimens, laser polishing and laser ablation processes have been implemented on the aluminum surface before joining. The polyamide surface was also treated with the laser beam, separately. The surfaces were tested by several characterization techniques before and after each surface treatment. Then aluminum and polyamide samples with different surface treatments have been joined with an identical laser joining process. The mechanical properties of the joints in single lap shear configuration are reported and the failure mechanisms are discussed based on micro-computed x-ray tomography imaging of joined specimens and microscopic analysis before failure. Results show that both surface treatments of aluminum significantly improve the shear load of the joint; however, with different failure mechanisms. Polyamide surface treatment and increasing degree of crystallinity are effective when combined with the laser polishing of the Al surface. This combination is responsible for further enhancement of the shear load of the joint to the limit of base metal strength which is approximately 60 % improvement compared to the untreated samples. Finally, energy dispersive X-ray mapping shows the physicochemical bonding between aluminum oxide and polyamide at the interface.
  • Item
    Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission
    (Amsterdam [u.a.] : Elsevier, 2022) Bagheri, Gholamhossein; Schlenczek, Oliver; Turco, Laura; Thiede, Birte; Stieger, Katja; Kosub, Jana M.; Clauberg, Sigrid; Pöhlker, Mira L.; Pöhlker, Christopher; Moláček, Jan; Scheithauer, Simone; Bodenschatz, Eberhard
    Understanding infection transmission between individuals, as well as evaluating the efficacy of protective measures, are key issues in pandemics driven by human respiratory particles. The key is a quantitative understanding of the size and concentration of particles exhaled and their variability across the size range for a representative population of all ages, genders, and different activities. Here we present data from 132 healthy volunteers aged 5 to 80 years, measured over the entire particle size range for each individual. Conventional particle spectrometry was combined with in-line holography under well-controlled conditions for common activities such as breathing, speaking, singing, and shouting. We find age to be the most important parameter for the concentration of small exhale particles <5 µm (PM5), which doubles over a 7-year period in adolescents and over a 30-year period in adults. Gender, body mass index, smoking or exercise habits have no discernible effect. We provide evidence that particles with a diameter of <5 µm originate from the lower respiratory tract, 5–15 µm from the larynx/pharynx, and >15 µm from the oral cavity. PM5 concentration can vary by one order of magnitude within a person, while inter-person variability can span two orders of magnitude, largely explained by difference in age. We found no discernible inter-person variability for particles larger than 5 µm. Our results show that cumulative volume of PM5 is 2–8 times higher in adults than in children. In contrast, number and volume concentration of larger particles, which are produced predominantly in the upper respiratory tract, is largely independent of age. Finally, we examined different types of airborne-transmissible respiratory diseases and provided insights into possible modes of infection transmission with and without several types/fits of face masks.
  • Item
    A protocol to develop Shared Socio-economic Pathways for European agriculture
    (Amsterdam [u.a.] : Elsevier, 2019) Mitter, Hermine; Techen, Anja-K.; Sinabell, Franz; Helming, Katharina; Kok, Kasper; Priess, Jörg A.; Schmid, Erwin; Bodirsky, Benjamin L.; Holman, Ian; Lehtonen, Heikki; Leip, Adrian; Le Mouël, Chantal; Mehdi, Bano; Michetti, Melania; Mittenzwei, Klaus; Mora, Olivier; Øygarden, Lillian; Reidsma, Pytrik; Schaldach, Rüdiger; Schönhart, Martin
    Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture – Eur-Agri-SSPs – to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS. © 2019 Elsevier Ltd
  • Item
    Process Monitoring of a Vibration Dampening CFRP Drill Tube in BTA deep hole drilling using Fibre-Bragg-Grating Sensors
    (Amsterdam [u.a.] : Elsevier, 2022) Summa, Jannik; Michel, Sebastian; Kurkowski, Moritz; Biermann, Dirk; Stommel, Markus; Herrmann, Hans-Georg
    The large tool length in BTA deep hole drilling often leads to strong torsional vibrations of the tool system, leading to a reduced bore hole quality failures. When substituting steel drill tubes with tubes from composite material, the laminate structure dampens these vibrations. Secondly, the integration of sensors allow to monitor process vibrations. This contribution introduces a new sensor platform to measure process vibrations, feed force and drilling torque using Fibre-Bragg Grating Sensors. The presented experimental results focus on characteristic frequency spectra with natural torsional and compression frequencies of the CFRP drill tube, which show variations due to changed feed.
  • Item
    Anisotropic Finite Element Mesh Adaptation via Higher Dimensional Embedding
    (Amsterdam [u.a.] : Elsevier, 2015) Dassi, Franco; Si, Hang; Perotto, Simona; Streckenbach, Timo
    In this paper we provide a novel anisotropic mesh adaptation technique for adaptive finite element analysis. It is based on the concept of higher dimensional embedding, which was exploited in [1], [2], [3], [4] to obtain an anisotropic curvature adapted mesh that fits a complex surface in R3. In the context of adaptive finite element simulation, the solution (which is an unknown function f : Ω ⊂ d → ) is sought by iteratively modifying a finite element mesh according to a mesh sizing field described via a (discrete) metric tensor field that is typically obtained through an error estimator. We proposed to use a higher dimensional embedding, Φf (x):= (x1, …, xd, s f (x1, …, xd), s ▿ f (x1, …, xd))t, instead of the mesh sizing field for the mesh adaption. This embedding contains both informations of the function f itself and its gradient. An isotropic mesh in this embedded space will correspond to an anisotropic mesh in the actual space, where the mesh elements are stretched and aligned according to the features of the function f. To better capture the anisotropy and gradation of the mesh, it is necessary to balance the contribution of the components in this embedding. We have properly adjusted Φf (x) for adaptive finite element analysis. To better understand and validate the proposed mesh adaptation strategy, we first provide a series of experimental tests for piecewise linear interpolation of known functions. We then applied this approach in an adaptive finite element solution of partial differential equations. Both tests are performed on two-dimensional domains in which adaptive triangular meshes are generated. We compared these results with the ones obtained by the software BAMG – a metric-based adaptive mesh generator. The errors measured in the L2 norm are comparable. Moreover, our meshes captured the anisotropy more accurately than the meshes of BAMG.
  • Item
    Tetrahedral Mesh Improvement Using Moving Mesh Smoothing and Lazy Searching Flips
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Kamenski, Lennard; Si, Hang
    We combine the new moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the new lazy flip technique, a reversible edge removal algorithm for local mesh quality improvement. These strategies already provide good mesh improvement on themselves, but their combination achieves astonishing results not reported so far. Provided numerical comparison with some publicly available mesh improving software show that we can obtain final tetrahedral meshes with dihedral angles between 40° and 123°.
  • Item
    On Indecomposable Polyhedra and the Number of Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2015) Goerigk, Nadja; Si, Hang
    The existence of indecomposable polyhedra, that is, the interior of every such polyhedron cannot be decomposed into a set of tetrahedra whose vertices are all of the given polyhedron, is well-known. However, the geometry and combinatorial structure of such polyhedra are much less studied. In this article, we investigate the structure of some well-known examples, the so-called Schönhardt polyhedron [10] and the Bagemihl's generalization of it [1], which will be called Bagemihl's polyhedra. We provide a construction of an additional point, so-called Steiner point, which can be used to decompose the Schönhardt and the Bagemihl's polyhedra. We then provide a construction of a larger class of three-dimensional indecomposable polyhedra which often appear in grid generation problems. We show that such polyhedra have the same combinatorial structure as the Schönhardt's and Bagemihl's polyhedra, but they may need more than one Steiner point to be decomposed. Given such a polyhedron with n ≥ 6 vertices, we show that it can be decomposed by adding at most interior Steiner points. We also show that this number is optimal in theworst case.
  • Item
    On Tetrahedralisations of Reduced Chazelle Polyhedra with Interior Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2016) Si, Hang; Goerigk, Nadja
    The non-convex polyhedron constructed by Chazelle, known as the Chazelle polyhedron [4], establishes a quadratic lower bound on the minimum number of convex pieces for the 3d polyhedron partitioning problem. In this paper, we study the problem of tetrahedralising the Chazelle polyhedron without modifying its exterior boundary. It is motivated by a crucial step in tetrahedral mesh generation in which a set of arbitrary constraints (edges or faces) need to be entirely preserved. The goal of this study is to gain more knowledge about the family of 3d indecomposable polyhedra which needs additional points, so-called Steiner points, to be tetrahedralised. The requirement of only using interior Steiner points for the Chazelle polyhedron is extremely challenging. We first “cut off” the volume of the Chazelle polyhedron by removing the regions that are tetrahedralisable. This leads to a 3d non-convex polyhedron whose vertices are all in the two slightly shifted saddle surfaces which are used to construct the Chazelle polyhedron. We call it the reduced Chazelle polyhedron. It is an indecomposable polyhedron. We then give a set of (N + 1)2 interior Steiner points that ensures the existence of a tetrahedralisation of the reduced Chazelle polyhedron with 4(N + 1) vertices. The proof is done by transforming a 3d tetrahedralisation problem into a 2d edge flip problem. In particular, we design an edge splitting and flipping algorithm and prove that it gives to a tetrahedralisation of the reduced Chazelle polyhedron.
  • Item
    Advanced Electric Propulsion Diagnostic Tools at IOM
    (Amsterdam [u.a.] : Elsevier, 2017) Bundesmann, C.; Eichhorn, C.; Scholze, F.; Spemann, D.; Neumann, H.; Scortecci, F.; Leiter, H.J.; Holste, K.; Klar, P.J.; Bulit, A.; Dannenmayer, K.; Amo, J. Gonzalez del
    Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1], which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1], [4]), in two different vacuum facilities.