Search Results

Now showing 1 - 2 of 2
  • Item
    Process Monitoring of a Vibration Dampening CFRP Drill Tube in BTA deep hole drilling using Fibre-Bragg-Grating Sensors
    (Amsterdam [u.a.] : Elsevier, 2022) Summa, Jannik; Michel, Sebastian; Kurkowski, Moritz; Biermann, Dirk; Stommel, Markus; Herrmann, Hans-Georg
    The large tool length in BTA deep hole drilling often leads to strong torsional vibrations of the tool system, leading to a reduced bore hole quality failures. When substituting steel drill tubes with tubes from composite material, the laminate structure dampens these vibrations. Secondly, the integration of sensors allow to monitor process vibrations. This contribution introduces a new sensor platform to measure process vibrations, feed force and drilling torque using Fibre-Bragg Grating Sensors. The presented experimental results focus on characteristic frequency spectra with natural torsional and compression frequencies of the CFRP drill tube, which show variations due to changed feed.
  • Item
    Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials
    (Amsterdam [u.a.] : Elsevier, 2018) Gnanaseelan, Minoj; Chen, Yian; Luo, Jinji; Krause, Beate; Pionteck, Jürgen; Pötschke, Petra; Qu, Haisong
    Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.