Search Results

Now showing 1 - 2 of 2
  • Item
    Characterization of Silicon Crystals Grown from Melt in a Granulate Crucible
    (Warrendale, Pa : TMS, 2020) Dadzis, K.; Menzel, R.; Juda, U.; Irmscher, K.; Kranert, C.; Müller, M.; Ehrl, M.; Weingärtner, R.; Reimann, C.; Abrosimov, N.; Riemann, H.
    The growth of silicon crystals from a melt contained in a granulate crucible significantly differs from the classical growth techniques because of the granulate feedstock and the continuous growth process. We performed a systematic study of impurities and structural defects in several such crystals with diameters up to 60 mm. The possible origin of various defects is discussed and attributed to feedstock (concentration of transition metals), growth setup (carbon concentration), or growth process (dislocation density), showing the potential for further optimization. A distinct correlation between crystal defects and bulk carrier lifetime is observed. A bulk carrier lifetime with values up to 600 μs on passivated surfaces of dislocation-free parts of the crystal is currently achieved.
  • Item
    Optimization of the Epitaxial Growth of Undoped GaN Waveguides in GaN-Based Laser Diodes Evaluated by Photoluminescence
    (Warrendale, Pa : TMS, 2020) Netzel, C.; Hoffmann, V.; Einfeldt, S.; Weyers, M.
    Non-intentionally doped c-plane GaN layers are generally employed as p-side waveguide layers in violet/blue-emitting laser diodes. The recombination and diffusion of charge carriers in the p-side GaN waveguide influence the injection efficiency of holes into the InGaN quantum wells of these devices. In this study, the non-radiative recombination and the diffusivity in the [000-1] direction for charge carriers in such GaN layers are investigated by the photoluminescence of buried InGaN quantum wells, in addition to the GaN photoluminescence. The vertical charge carrier diffusion length and the diffusion constant in GaN were determined by evaluating the intensity from InGaN quantum wells in different depths below a top GaN layer. Additionally, the intensity from the buried InGaN quantum wells was found to be more sensitive to variations in the non-radiative recombination rate in the GaN layer than the intensity from the GaN itself. The study enables conclusions to be drawn on how the growth of a p-side GaN waveguide layer has to be optimized: (1) The charge carrier diffusivity in the [000-1] direction at device operation temperature is limited by phonon scattering and can be only slightly improved by material quality. (2) The use of TMGa (trimethylgallium) instead of TEGa (triethylgallium) as a precursor for the growth of GaN lowers the background silicon doping level and is advantageous for a large hole diffusion length. (3) Small growth rates below 0.5 μm/h when using TMGa or below 0.12 μm/h when using TEGa enhance non-radiative recombination. (4) A V/III gas ratio of 2200 or more is needed for low non-radiative recombination rates in GaN.