Search Results

Now showing 1 - 5 of 5
  • Item
    Modelling of a radio frequency plasma bridge neutralizer (RFPBN)
    (Amsterdam [u.a.] : Elsevier, 2017) Scholze, F.; Eichhorn, C.; Bundesmann, C.; Spemann, D.; Neumann, H.; Bulit, A.; Feili, D.; Gonzalez del Amo, J.
    A performance model of a radio frequency plasma bridge neutralizer was developed to calculate the electrical parameters and optimize the neutralizer design. Minimization of power losses and gas consumption, and a maximization of the neutralizer lifetime and the reliability of the system are requirements of all electric propulsion concepts and strongly determine their future application. The requirements of the neutralizer depend on mission profiles.
  • Item
    From statistic to deterministic nanostructures in fused silica induced by nanosecond laser radiation
    (Amsterdam [u.a.] : Elsevier, 2018) Lorenz, Pierre; Klöppel, Michael; Zagoranskiy, Igor; Zimmer, Klaus
    The production of structures by laser machining below the diffraction limit is still a challenge. However, self-organization processes can be useful. The laser-induced self-organized modification of the shape of photolithographic produced chromium structures on fused silica as well as the structuring of the fused silica surface by nanosecond UV laser radiation was studied, respectively. Low fluence single pulse laser irradiation (□ > 300 mJ/cm2) cause the formation from chromium squares to droplets due to the mass transport in the molten chromium film. This process is governed by the instability of the molten metal due to the surface tension driven liquid phase mass transport. For a chromium pattern size similar to the instability length two specific droplet distributions were found which are single droplets with a determined position near the centre of the original pattern or random distributed smaller droplets arranged circularly. Each of the metal patterns can be transferred into the fused silica by a multi-pulse irradiation. The experimental results can be simulated well for low fluences by sequential solving the heat and Navier-Stokes equation.
  • Item
    Self-cleaning stainless steel surfaces induced by laser processing and chemical engineering
    (Amsterdam [u.a.] : Elsevier, 2022) Lorenz, Pierre; Zajadacz, Joachim; Marquardt, Franka; Ehrhardt, Martin; Hommes, Gregor; Peter, Sebastian; Zimmer, Klaus
    Nanostructured surfaces show a variety of beneficial macroscopic effects. The combination of hierarchic nanostructures with a suitable chemical surface composition allows for the fabrication of surfaces with interesting fluidic properties beyond such effects. This approach enables the specification of nano/microstructure and chemical composition independent of each other. Various hierarchical micro- and nanostructures can be realized by laser texturing of stainless steel surfaces with infrared picosecond laser. Simultaneously, the surface is activated for chemical processing. The surface can now be tuned by bonding of a self-assembled monolayer on the laser-treated surface by chemical treatment. This two-step functionalization process allows the for separated adjusting of the surface topography and chemical composition and thus for the well-defined setting of the surface properties. The fabrication of superhydrophobic surfaces with self-cleaning properties are performed that can be functionalized further by subsequent laser-irradiation. Furthermore, the long-time stability of the surface functionalization in relation to the impact chemicals or radiation was investigated.
  • Item
    Advanced Electric Propulsion Diagnostic Tools at IOM
    (Amsterdam [u.a.] : Elsevier, 2017) Bundesmann, C.; Eichhorn, C.; Scholze, F.; Spemann, D.; Neumann, H.; Scortecci, F.; Leiter, H.J.; Holste, K.; Klar, P.J.; Bulit, A.; Dannenmayer, K.; Amo, J. Gonzalez del
    Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1], which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1], [4]), in two different vacuum facilities.
  • Item
    Secondary electron yield engineering of copper surfaces by 532 nm ultrashort laser pulses
    (Amsterdam [u.a.] : Elsevier, 2022) Lorenz, Pierre; Bez, Elena; Himmerlich, Marcel; Ehrhardt, Martin; Taborelli, Mauro; Zimmer, Klaus
    Nanostructured surfaces exhibit outstanding properties and enable manifold industrial applications. In this study the laser surface processing of polycrystalline, flat copper surfaces by 532 nm picosecond laser irradiation for secondary electron yield (SEY) reduction is reported. The laser beam was scanned in parallel lines across the sample surface in order to modify large surface areas. Morphology and SEY are characterized in dependence of the process parameters to derive correlations and mechanisms of the laser-based SEY engineering process. The nano- and microstructure morphology of the laser-modified surface was characterized by scanning electron microscopy and the secondary electron yield was measured. In general, an SEY reduction with increasing accumulated laser fluence was found. In particular, at low scanning speed (1 mm/s - 10 mm/s) and “high” laser power (~ 1 W) compact nanostructures with a very low SEY maximum of 0.7 are formed.