Search Results

Now showing 1 - 8 of 8
  • Item
    Copper-iron bimetal ion-exchanged sapo-34 for NH3-scr of NOx
    (Basel : MDPI, 2020) Doan, Tuan; Dam, Phong; Nguyen, Khang; Vuong, Thanh Huyen; Le, Minh Thang; Pham, Thanh Huyen
    SAPO-34 was prepared with a mixture of three templates containing triethylamine, tetraethylammonium hydroxide, and morpholine, which leads to unique properties for support and production cost reduction. Meanwhile, Cu/SAPO-34, Fe/SAPO-34, and Cu-Fe/SAPO-34 were prepared through the ion-exchanged method in aqueous solution and used for selective catalytic reduction (SCR) of NOx with NH3. The physical structure and original crystal of SAPO-34 are maintained in the catalysts. Cu-Fe/SAPO-34 catalysts exhibit high NOx conversion in a broad temperature window, even in the presence of H2O. The physicochemical properties of synthesized samples were further characterized by various methods, including XRD, FE-SEM, EDS, N2 adsorption-desorption isotherms, UV-Vis-DRS spectroscopy, NH3-TPD, H2-TPR, and EPR. The best catalyst, 3Cu-1Fe/SAPO-34 exhibited high NOx conversion (> 90%) in a wide temperature window of 250–600 °C, even in the presence of H2O. In comparison with mono-metallic samples, the 3Cu-1Fe/SAPO-34 catalyst had more isolated Cu2+ ions and additional oligomeric Fe3+ active sites, which mainly contributed to the higher capacity of NH3 and NOx adsorption by the enhancement of the number of acid sites as well as its greater reducibility. Therefore, this synergistic effect between iron and copper in the 3Cu-1Fe/SAPO-34 catalyst prompted higher catalytic performance in more extensive temperature as well as hydrothermal stability after iron incorporation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Deep Geothermal Energy Production in Germany
    (Basel : MDPI, 2014) Agemar, Thorsten; Weber, Josef; Schulz, Rüdiger
    Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].
  • Item
    Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook
    (Basel : MDPI, 2018) Agemar, Thorsten; Weber, Josef; Moeck, Inga S.
    Any geothermal resource assessment requires consistent and widely accepted terminology, methods, and reporting schemes that facilitate the comparison of geothermal resource estimates. This paper reviews common resource assessment methods, as well as reporting codes and terminology. Based on a rigorous analysis of the portrayed concepts and methods, it discusses the appropriateness of the existing reporting codes for sustainable utilization of geothermal resources in Germany. Since the last quantitative geothermal resource assessment in Germany was done 15 years ago, a revised report is overdue. Unlike fossil energy commodities, geothermal energy replenishes naturally and heat recuperation increases in created heat sinks. This replenishment process offers the opportunity for sustainable reservoir management in the case of moderate production rates or cyclic operation. Existing reporting codes, however, regard geothermal resources in a similar way to fossil resources or focus too much on field development rather than on the whole assessment process. In order to emphasize the renewability of geothermal energy, we propose the reporting of geothermal capacities (per doublet or per km2) instead of recoverable heat energy which depends very much on project lifetime and other factors. As a first step, a new classification scheme for geothermal resources and reserves is outlined.
  • Item
    The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps)
    (Basel : MDPI, 2022) Argante, Valentina; Tanner, David Colin; Brandes, Christian; von Hagke, Christoph; Tsukamoto, Sumiko
    Faut gouge forms at the core of the fault as the result of a slip in the upper brittle crust. Therefore, the deformation mechanisms and conditions under which the fault gouge was formed can document the stages of fault movement in the crust. We carried out a microstructural analysis on a fault gouge from a hanging-wall branch fault of the Simplon Fault Zone, a major low-angle normal fault in the European Alps. We use thin-section analysis, together with backscattered electron imaging and X-ray diffractometry (XRD), to show that a multistage history from ductile to brittle deformation within the fault gouge. We argue that this multistage deformation history is the result of continuous exhumation history from high to low temperature, along the Simplon Fault Zone. Because of the predominance of pressure solution and veining, we associated a large part of the deformation in the fault gouge with viscous-frictional behaviour that occurred at the brittle-ductile transition. Phyllosilicates and graphite likely caused fault lubrication that we suggested played a role in localizing slip along this major low-angle normal fault.
  • Item
    Esr and radiocarbon dating of gut strings from early plucked instruments
    (Basel : MDPI, 2020) Tsukamoto, Sumiko; Takeuchi, Taro; Tani, Atsushi; Miyairi, Yosuke; Yokoyama, Yusuke
    Early European plucked instruments have recently experienced a great revival, but a few aspects remain unknown (e.g., the gauge of gut strings). Here we report, for the first time, that the electron spin resonance (ESR) signal intensity of oxidized iron, Fe(III), from gut strings at g = 2 increases linearly with age within a few hundred years. The signal increase in the remaining old strings on early instruments can be used to judge if they are as old as or younger than the instrument. Obtaining the authenticity information of gut strings contributes to the revival of the old instruments and the music. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Fe0/H2O Filtration Systems for Decentralized Safe Drinking Water: Where to from Here?
    (Basel : MDPI, 2019) Nanseu-Njiki, Charles; Gwenzi, Willis; Pengou, Martin; Rahman, Mohammad; Noubactep, Chicgoua
    Inadequate access to safe drinking water is one of the most pervasive problems currently afflicting the developing world. Scientists and engineers are called to present affordable but efficient solutions, particularly applicable to small communities. Filtration systems based on metallic iron (Fe0) are discussed in the literature as one such viable solution, whether as a stand-alone system or as a complement to slow sand filters (SSFs). Fe0 filters can also be improved by incorporating biochar to form Fe0-biochar filtration systems with potentially higher contaminant removal efficiencies than those based on Fe0 or biochar alone. These three low-cost and chemical-free systems (Fe0, biochar, SSFs) have the potential to provide universal access to safe drinking water. However, a well-structured systematic research is needed to design robust and efficient water treatment systems based on these affordable filter materials. This communication highlights the technology being developed to use Fe0-based systems for decentralized safe drinking water provision. Future research directions for the design of the next generation Fe0-based systems are highlighted. It is shown that Fe0 enhances the efficiency of SSFs, while biochar has the potential to alleviate the loss of porosity and uncertainties arising from the non-linear kinetics of iron corrosion. Fe0-based systems are an affordable and applicable technology for small communities in low-income countries, which could contribute to attaining self-reliance in clean water supply and universal public health.
  • Item
    Airborne electromagnetic, magnetic, and radiometric surveys at the German North Sea coast applied to groundwater and soil investigations
    (Basel : MDPI, 2020) Siemon, Bernhard; Ibs-von Seht, Malte; Steuer, Annika; Deus, Nico; Wiederhold, Helga
    The knowledge of the subsurface down to about one hundred meters is fundamental for a variety of economic, ecological, and geoscientific tasks, particularly in coastal zones. Marine and terrestrial processes influence coastal zones and both seawater intrusion and submarine freshwater discharges may occur. The Federal Institute for Geosciences and Natural Resources (BGR) conducted airborne geophysical surveys in the coastal region of the German Bight between 2000 and 2014. The helicopter-borne system used simultaneously collected electromagnetic (HEM), magnetic (HMG), and radiometric (HRD) data. An area of about 5900 km2 was covered with parallel flight lines at 250 m line separation and additional tie-lines at larger separations. In total, about 25,000 km of data at sampling distances of 4 m (HEM, HMG) and 40 m (HRD) were acquired. The electrical resistivity (HEM), the anomalies of the magnetic field (HMG), and the exposure rate (HRD) are the resulting geophysical parameters derived from the data. The results are displayed as maps of the geophysical parameters as well as vertical resistivity sections (only HEM). Both data and products are publicly available via BGR’s product center. The airborne geophysical results helped to outline the fresh–saline groundwater interface, freshwater lenses on islands, submarine groundwater discharges, buried tunnel valleys, mires, and ancient landscapes.
  • Item
    White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania
    (Basel : MDPI, 2019) Ndé-Tchoupé, Arnaud; Tepong-Tsindé, Raoul; Lufingo, Mesia; Pembe-Ali, Zuleikha; Lugodisha, Innocent; Mureth, Risala; Nkinda, Mihayo; Marwa, Janeth; Gwenzi, Willis; Mwamila, Tulinave; Rahman, Mohammad; Noubactep, Chicgoua; Njau, Karoli
    Fluorosis has been prevalent in the great East African Rift Valley (EARV) since before this region was given a name. In the Tanganyika days, Germans reported elevated fluoride concentrations in natural waters. In the 1930s, the clear relationship between high fluoride level and mottling of teeth was established. Since then, the global research community has engaged in the battle to provide fluoride-free drinking water, and the battle is not yet won for low-income communities. An applicable concept for fluoride-free drinking water in the EARV was recently presented, using the Kilimanjaro as a rainwater harvesting park. The Kilimanjaro concept implies that rainwater is harvested, stored on the Kilimanjaro mountains, gravity-transported to the point of use, eventually blended with natural water and treated for distribution. This article provides a roadmap for the implementation of the Kilimanjaro concept in Tanzania. Specifically, the current paper addresses the following: (i) presents updated nationwide information on fluoride contaminated areas, (ii) discusses the quality and quantity of rainwater, and current rainwater harvesting practices in Tanzania, (iii) highlights how low-cost water filters based on Fe0/biochar can be integrating into rainwater harvesting (RWH) systems to provide clean drinking water, and (iv) discusses the need for strict regulation of RWH practices to optimize water collection and storage, while simplifying the water treatment chain, and recommends strict analytical monitoring of water quality and public education to sustain public health in the EARV. In summary, it is demonstrated that, by combining rainwater harvesting and low-cots water treatment methods, the Kilimanjaro concept has the potential to provide clean drinking water, and overcome fluorosis on a long-term basis. However, a detailed design process is required to determine: (i) institutional roles, and community contributions and participation, (ii) optimal location and sizing of conveyance and storage facilities to avoid excessive pumping costs, and (iii) project funding mechanisms, including prospects for government subsidy. By drawing attention to the Kilimanjaro concept, the article calls for African engineers and scientists to take the lead in translating this concept into reality for the benefit of public health, while simultaneously increasing their self-confidence to address other developmental challenges pervasive in Africa.