Search Results

Now showing 1 - 10 of 110
  • Item
    Understanding Business Environments and Success Factors for Emerging Bioeconomy Enterprises through a Comprehensive Analytical Framework
    (Basel : MDPI, 2020) Adamseged, Muluken Elias; Grundmann, Philipp
    The development toward the bioeconomy requires, among others, generating and institutionalizing knowledge that contributes to technical and nontechnical inventions and innovations. Efforts to support innovation are often linked with the development of business models that facilitate the development in bioeconomy. However, the interdependences between the business models and their business environments are not sufficiently well understood in a way where misalignments that can obstruct the development can be dealt with adequately. Given this lacuna, this research aims to contribute to the development of a comprehensive analytical framework for better understanding the conditions of business environment as well as empirically apply the framework in an empirical study on cases of bioeconomy enterprises in Europe. In this paper, a comprehensive business environment framework is developed and applied for analyzing over 80 cases, thereby allowing for critical action arenas and crucial success factors to be identified. The findings are derived from a systematic application of the framework to relevant action arenas for business development: institutional development, technology and knowledge, consumers’ agency, market structure, funding, resource and infrastructure, and training and education. The results show that businesses in the bioeconomy, unlike other businesses, have to deal with more and very specific constraining legislative issues, infant and non-adapted technology and knowledge, as well as unclear values and perceptions of consumers. Due to this, businesses have to develop new forms of cooperation with different stakeholders. Successful businesses are characterized by the fact that they develop specific strategies, steering structures, and processes with a particular focus on learning and innovation to overcome misalignments between the business environment and their business models. Focusing efforts on learning and innovation in institutional development, technology and knowledge, consumers’ agency, and funding are especially promising as these turned out to be particularly critical and in particular need of institutional alignment for reducing different kinds of transaction costs in the development of bioeconomy.
  • Item
    Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications
    (Basel : MDPI, 2018) Raak, Norbert; Abbate, Raffaele Andrea; Lederer, Albena; Rohm, Harald; Jaros, Doris
    Casein is the major protein fraction in milk, and its cross-linking has been a topic of scientific interest for many years. Enzymatic cross-linking has huge potential to modify relevant techno-functional properties of casein, whereas non-enzymatic cross-linking occurs naturally during the storage and processing of milk and dairy products. Two size separation techniques were applied for characterisation of these reactions: gel electrophoresis and size exclusion chromatography. This review summarises their separation principles and discusses the outcome of studies on cross-linked casein from the last ~20 years. Both methods, however, show limitations concerning separation range and are applied mainly under denaturing and reducing conditions. In contrast, field flow fractionation has a broad separation range and can be easily applied under native conditions. Although this method has become a powerful tool in polymer and nanoparticle analysis and was used in few studies on casein micelles, it has not yet been applied to investigate cross-linked casein. Finally, the principles and requirements for absolute molar mass determination are reviewed, which will be of increased interest in the future since suitable calibration substances for casein polymers are scarce.
  • Item
    Improving the Accuracy of Hydrodynamic Simulations in Data Scarce Environments Using Bayesian Model Averaging: A Case Study of the Inner Niger Delta, Mali, West Africa
    (Basel : MDPI, 2019) Haque, Md Mominul; Seidou, Ousmane; Mohammadian, Abdolmajid; Djibo, Abdouramane Gado; Liersch, Stefan; Fournet, Samuel; Karam, Sara; Perera, Edangodage Duminda Pradeep; Kleynhans, Martin
    In this paper, the study area was the Inner Niger Delta (IND) in Mali, West Africa. The IND is threatened by climate change, increasing irrigation, and dam operations. 2D hydrodynamic modelling was used to simulate water levels, discharge, and inundation extent in the IND. Three different digital elevation models (DEM) (SRTM, MERIT, and a DEM derived from satellite images were used as a source of elevation data. Six different models were created, with different sources of elevation data and different downstream boundary conditions. Given that the performance of the models varies according to the location in the IND, the variable under consideration and the performance criteria, Bayesian Model Averaging (BMA) was used to assess the relative performance of each of the six models. The BMA weights, along with deterministic performance measures, such as the Nash Sutcliffe coefficient (NS) and the Pearson’s correlation coefficient (r), provide quantitative evidence as to which model is the best when simulating a particular hydraulic variable at a particular location. After the models were combined with BMA, both discharge and water levels could be simulated with reasonable precision (NS > 0.8). The results of this work can contribute to the more efficient management of water resources in the IND.
  • Item
    Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems
    (Basel : MDPI, 2013) Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe
    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.
  • Item
    Evaluation of shifted excitation Raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra
    (Basel : MDPI, 2017) Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W.; Popp, Jürgen
    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.
  • Item
    A computational model for path loss in wireless sensor networks in orchard environments
    (Basel : MDPI, 2014) Anastassiu, Hristos T.; Vougioukas, Stavros; Fronimos, Theodoros; Regen, Christian; Petrou, Loukas; Zude, Manuela; Käthner, Jana
    A computational model for radio wave propagation through tree orchards is presented. Trees are modeled as collections of branches, geometrically approximated by cylinders, whose dimensions are determined on the basis of measurements in a cherry orchard. Tree canopies are modeled as dielectric spheres of appropriate size. A single row of trees was modeled by creating copies of a representative tree model positioned on top of a rectangular, lossy dielectric slab that simulated the ground. The complete scattering model, including soil and trees, enhanced by periodicity conditions corresponding to the array, was characterized via a commercial computational software tool for simulating the wave propagation by means of the Finite Element Method. The attenuation of the simulated signal was compared to measurements taken in the cherry orchard, using two ZigBee receiver-transmitter modules. Near the top of the tree canopies (at 3 m), the predicted attenuation was close to the measured one—just slightly underestimated. However, at 1.5 m the solver underestimated the measured attenuation significantly, especially when leaves were present and, as distances grew longer. This suggests that the effects of scattering from neighboring tree rows need to be incorporated into the model. However, complex geometries result in ill conditioned linear systems that affect the solver’s convergence.
  • Item
    Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress
    (Basel : MDPI, 2018) Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Kirchhoff, Johanna; Tannert, Astrid; Neugebauer, Ute; Samek, Ota; Zemánek, Pavel
    Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.
  • Item
    How Clusters Create Shared Value in Rural Areas: An Examination of Six Case Studies
    (Basel : MDPI, 2021) Martinidis, George; Adamseged, Muluken Elias; Dyjakon, Arkadiusz; Fallas, Yannis; Foutri, Angeliki; Grundmann, Philipp; Hamann, Karen; Minta, Stanislaw; Ntavos, Nikolaos; Råberg, Tora; Russo, Silvia; Viaggi, Davide
    The main aim of this paper is to demonstrate that clusters can support the sustainable development of rural areas through the creation of shared value. This is done via the close exam-ination of six different cases of rural clusters in Greece, Italy, Germany, Poland, Denmark, and Sweden. Qualitative as well as quantitative data were taken from the clusters, which demonstrated that their main business approaches naturally coincided with the creation of economic, social, and environmental benefits for the local communities in which they operated. The case clusters were created in a top-down manner, aimed at boosting regional R&D activities and making the local economy more competitive and more sustainable. However, private initiative took over and al-lowed these clusters to flourish because meeting the regions’ economic, social, and environmental needs successfully coincided with the target of the clusters’ own development and profitability. The results show that clusters, with their potential for shared value creation, can constitute a powerful engine for the revitalisation and development of rural areas, addressing the significant challenges which they are currently facing.
  • Item
    Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study
    (Basel : MDPI, 2021) Tõnisson, Liina; Voigtländer, Jens; Weger, Michael; Assmann, Denise; Käthner, Ralf; Heinold, Bernd; Macke, Andreas
    Community-based participatory research initiatives such as “hackAir”, “luftdaten.info”, “senseBox”, “CAPTOR”, “CurieuzeNeuzen Vlaanderen”, “communityAQ”, and “Healthy Air, Healthier Children” campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.
  • Item
    Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland
    (Basel : MDPI, 2019) O’Keeffe, Joanna; Marcinkowski, Paweł; Utratna, Marta; Piniewski, Mikołaj; Kardel, Ignacy; Kundzewicz, Zbigniew; Okruszko, Tomasz
    Climate change is expected to affect the water cycle through changes in precipitation, river streamflow, and soil moisture dynamics, and therefore, present a threat to groundwater and surface water-fed wetland habitats and their biodiversity. This article examines the past trends and future impacts of climate change on riparian, water-dependent habitats within the special areas of conservation (SAC) of the Natura 2000 network located within Odra and Vistula River basins in Poland. Hydrological modelling using the Soil and Water Assessment Tool (SWAT) was driven by a set of nine EURO-CORDEX regional climate models under two greenhouse gas concentration trajectories. Changes in the duration of flooding and inundation events were used to assess climate change’s impact on surface water-fed wetland habitats. The groundwater-fed wetlands were evaluated on the basis of changes in soil water content. Information about the current conservation status, threats, and pressures that affect the habitats suggest that the wetlands might dry out. Increased precipitation projected for the future causing increased water supply to both surface water and groundwater-fed wetlands would lead to beneficial outcomes for habitats with good, average, or reduced conservation status. However, habitats with an excellent conservation status that are already in optimum condition could be negatively affected by climate change as increased soil water or duration of overbank flow would exceed their tolerance.